Math, asked by vedant331, 1 year ago

the percentage increases in the area of a triangle if each of its sides is double each

Answers

Answered by ShuchiRecites
9
\textbf{ Hello Mate! }

Area of triangle by heron's formula

 = \sqrt{s(s - a)(s - b)(s - c}
where,

s= \frac{a + b + c}{2} \\
As per the sides are doubled,

s' = \frac{2a + 2b + 2c}{2} \\ s' = \frac{2(a + b + c)}{2} \\ s' = a + b + c

s' / s = (a+b+c)/[(a+b+c)/2]

s' = 2s

 = \sqrt{s'(s' - 2a)(s' - 2b)(s' - 2c)} \\ = \sqrt{2s(2s - 2a)(2s - 2b)(2s - 2c)} \\ = \sqrt{2s \times 2(s - a) \times 2(s - b) \times 2(s - c)} \\ = \sqrt{16s(s - a)(s - b)(s - c)} \\ = 4 \times \: area \: of \: triangle

Chane in area = [( 4 - 1 ) area of triangle / area of triangle ] × 100

= 300%

\textsf{ \red{ Percentage increase is 300}}

Have great future ahead!
Answered by GalacticCluster
8
<b><u>Hii !<u><b>

Here is your answer !!

_____________________________

Let the sides of the triangle be a , b and c

Semiperimeter = s

EQUATION ( 1 )

a \: = \: \sqrt{s(s - a)(s - b)(s - c) }

When sides doubled ,

Sides are 2a , 2b and 2c

Semiperimeter = 2s

area \: = \sqrt{2s(2s - 2a)(2s - 2b)(2s - 2c)} \\ \\ \: \: \: \: \: \: \: \: \: \: \: = \sqrt{2s \times 2(s - a) \times 2(s - b) \times 2(s - c)} \\ \\ \: \: \: \: \: \: \: \: \: \: \: = 4 \sqrt{s(s - a)(s - b)(s - c)}
FROM EQUATION ( 1 ) ,

 \: \: \: \: \: \: \: \: \: \: \: = 4a

Increase in area =

4a - a = 3a

Percentage increase =

 \frac{3a}{a} \times 100 = 300 \: \% \: \: \: \: ans

_____________________________

THANKS !!!!
Similar questions