Math, asked by akankshbhamer99, 6 months ago

the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​

Answers

Answered by prince5132
64

GIVEN :-

  • The perimeter of a triangle , s = 450 m.
  • Ratio of sides of triangle are 13:12:5.

TO FIND :-

  • The area of triangle by using heron's formula.

SOLUTION :-

Let the ratio constant be "x".

Sides of triangle = a = 13x , b = 12x , c =5x.

 \\  : \implies\displaystyle \sf \: Perimeter_{( \triangle)} \:  =  \dfrac{a + b + c}{2}  \\  \\  \\

 : \implies\displaystyle \sf \: 450 =  \dfrac{13x + 12x + 5x}{2}  \\  \\  \\

: \implies\displaystyle \sf \:450 =  \dfrac{30x}{2}  \\  \\  \\

: \implies\displaystyle \sf \:450 = 15x \\  \\  \\

: \implies\displaystyle \sf \:x =  \frac{450}{15}  \\  \\  \\

: \implies \underline{ \boxed{\displaystyle \sf \:x = 30m}} \\  \\

__________________________

 \\  \\ : \implies\displaystyle \sf \:side(a) = 13x \\  \\  \\

: \implies\displaystyle \sf \:side(a) = 13 \times 30 =  \underline{\boxed{ \displaystyle \sf 390m}} \\  \\

______________________

 \\  \\  : \implies\displaystyle \sf \:side(b) = 12x \\  \\  \\

 : \implies\displaystyle \sf \:side(b) = 12 \times 30 =  \underline{\boxed{ \displaystyle \sf 360m}} \\  \\

_______________________

 \\  \\ : \implies\displaystyle \sf \:side(c) = 5x \\  \\  \\

 : \implies\displaystyle \sf \:side(c) = 5 \times 30=  \underline{\boxed{ \displaystyle \sf 150m}} \\  \\

________________________

 \dashrightarrow \displaystyle \sf \:  Area_{( \triangle)} =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Area_{( \triangle)} = \sqrt{450(450 - 390)(450 - 360)(450 - 150)} \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Area_{( \triangle)} = \sqrt{40 \times 60 \times90 \times 300 }  \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Area_{( \triangle)} = \sqrt{729000000}  \\  \\  \\

\dashrightarrow  \underline{ \boxed{\displaystyle \sf \:  Area_{( \triangle)}  = 27000 \: m ^{2} }} \\  \\


amitkumar44481: Perfect :-)
Vamprixussa: Keep up the good work !
Answered by Anonymous
52

ANSWER✔

\large\underline\bold{GIVEN,}

\dashrightarrow Perimeter\:of\: triangle= 450m

\dashrightarrow ratios\:of\:the\:sides\:of\:triangles\:are \\ \dashrightarrow 13:12:5

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \star}}}

\large\underline\bold{TO\:FIND,}

\dashrightarrow Area\:of\:triangle\:using\:herons\: formula.

\large\underline\bold{SOLUTION,}

\therefore let\:the\:constant\:be\:'x'\:m

\dashrightarrow sides\:of\:triangle\: are,\\ \dashrightarrow a=13x \\b= 12x \\ c= 5x

\therefore finding\:the\:value\:of\:x.

\dashrightarrow perimeter\:of\:triangle= a+b+c

\dashrightarrow 13x+12x+5x=450

\implies 30x=450

\implies x= \dfrac{450}{30}

\implies x = \cancel\dfrac{450}{30}

\implies x=15

\bf{\boxed{\sf{ \star\:\: x=15 \:\: \star}}}

\dashrightarrow x=15\\  a= 13x= 13\times 15= 195m\\ \dashrightarrow b=12x= 12\times 15 = 180m\\ \dashrightarrow c=5x= 5\times 15= 75m

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore s= \dfrac{a+b+c}{2}

\implies s= \dfrac{195+180+75}{2}

\implies s= \dfrac{450}{2}

\implies s= 225

\bf\dashrightarrow area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}

\implies \sqrt{225(225-195)(225-180)(225-75)}

\implies \sqrt{225(30)(45)(150)}

\implies \sqrt{ 225(1350)(150)}

\implies 15\sqrt{202500}

\implies 15 \times 450

\implies 6750m^2

\large{\boxed{\bf{ \star\:\:area\:of\:triangle= 6750m^2 \:\: \star}}}

\large\underline\bold{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}

________________


Vamprixussa: Nice !
Similar questions