English, asked by Anonymous, 6 months ago

the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​ by​

Answers

Answered by ItzCaptonMack
54

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\dashrightarrow  \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\dashrightarrow \red{x=15}\\  \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

Answered by SarcasticL0ve
37

GivEn:

  • The Perimeter of a triangle is 450 m.
  • The ratio of sides of triangle are 13:12:15.

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Area of triangle using Heron's formula.

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

☯ Let sides of triangle be 13x, 12x and 5x.

⠀⠀⠀⠀⠀⠀⠀

\sf where \begin{cases} & \sf{a = \bf{13\;x}} \\ & \sf{b = \bf{12\;x}} \\ & \sf{c = \bf{5\;x}} \end{cases}\\ \\

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • The Perimeter of a triangle is 450 m.

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 13x + 12x + 5x = 450\\ \\

:\implies\sf 30x = 450\\ \\

:\implies\sf x = \cancel{ \dfrac{450}{30}}\\ \\

:\implies{\boxed{\frak{\pink{x = 15}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━

Therefore,

⠀⠀⠀⠀⠀⠀⠀

  • a = 13x = 195 m

  • b = 12x = 180 m

  • c = 5x = 75 m

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Using\; Heron's\;Formula\;:}}}\\ \\

We know that,

⠀⠀⠀⠀⠀⠀⠀

\rightarrow\sf s = \dfrac{a + b + c}{2}\qquad\qquad\bigg\lgroup\bf s = semi - perimeter \bigg\rgroup\\ \\

\rightarrow\sf s = \dfrac{195 + 180 + 75}{2}\\ \\

\rightarrow\sf s = \cancel{ \dfrac{450}{2}}\\ \\

\rightarrow\bf \red{s = 225}\\ \\

Now,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{225(225 - 195)(225 - 180)(225 - 75)}\\ \\

:\implies\sf \sqrt{225(30)(45)(150)}\\ \\

:\implies\sf \sqrt{225 \times 202500}\\ \\

:\implies\sf \sqrt{45562500}\\ \\

:\implies\sf{\boxed{\frak{\pink{6750\;m^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Area\;of\;triangle\;is\; \bf{6750}.}}}

Similar questions