English, asked by Anonymous, 5 months ago

the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​ by​

Answers

Answered by ItzCaptonMack
23

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\dashrightarrow  \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\dashrightarrow \red{x=15}\\  \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

Answered by 360Degree
15

\large{\underline{ \underline{ \sf{ \maltese \: {Given:-}}}}}

  • The perimeter of a triangle = 450 m.
  • The ratio of sides of triangle = 13:12:5

⠀⠀⠀⠀⠀⠀⠀

\large{\underline{ \underline{ \sf{ \maltese \: {To \: find:-}}}}}

  • Area of triangle using Heron's formula.

\large{\underline{ \underline{ \sf{ \maltese \: {Solution:-}}}}}

⠀⠀⠀⠀⠀⠀⠀

Let:–

  • Sides of triangle = 13x, 12x and 5x.

Where:–⠀⠀⠀⠀⠀⠀⠀

\qquad\bull \sf \: {a  =   \bf{13x}}

\qquad\bull \sf \: {b=   \bf{12x}}

\qquad\bull \sf \: {c=   \bf{5x}}

\qquad \quad{:}\longrightarrow\sf 13x + 12x + 5x = 450 \\

\qquad \quad{:}\longrightarrow\sf 30x = 450

\qquad \quad{:}\longrightarrow\sf x =   \cancel\dfrac{450}{30}

\qquad \quad  { : }\longrightarrow  \underline{\boxed{\sf x =   15}}

Therefore:–

\qquad\bull \sf \: {a = 13x =   \underline{\underline{195 m}}}

\qquad\bull \sf \: {b = 12x = \underline{\underline{180m}}}

\qquad\bull \sf \: {c = 5x =  \underline{\underline{75m}}}

Using Heron's Formula:–

We know that,

\qquad \quad{:}\longrightarrow\sf {s =  \dfrac{a + b + c}{2} }

\qquad \quad{:}\longrightarrow\sf {s =  \dfrac{195 + 180 +  75}{2} }

\qquad \quad{:}\longrightarrow\sf {s =  \dfrac{450}{2} }

\qquad \quad{:}\longrightarrow \underline{ \boxed{\sf {s =  225 }}}

Now,

⠀⠀⠀⠀⠀⠀⠀

\large \boxed{\boxed{\sf{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}

\qquad  \quad{:}\longrightarrow\sf \sqrt{225 \bigg(225 - 195 \bigg) \bigg (225 - 180 \bigg) \bigg(225 - 75 \bigg)}\\

\qquad  \quad{:}\longrightarrow\sf \sqrt{225 \bigg(30 \bigg) \bigg (45\bigg) \bigg(150 \bigg)}\\

\qquad  \quad{:}\longrightarrow\sf \sqrt{225  \times202500 }\\

\qquad\quad{:}\longrightarrow\sf \sqrt{ 45562500}\\

\qquad\quad{:}\longrightarrow  \underline{\boxed{\sf { 6750 \:  {m}^{2}}}}\\

\large{\underline{ \underline{ \sf{ \maltese \:{Answer:-}}}}}

  • The area of the triangle = 6750 square metres
Similar questions