Math, asked by jokerfetnanades, 1 month ago

The perimeter and area of a rectangular park are 50 m and 150 m² respectively. What are its dimensions?​

Answers

Answered by Aryan0123
38

Answer:

The dimensions are 15 m and 10 m

\\

✬ Step-by-step explanation:

Given:

  • Perimeter of rectangular park = 50 m
  • Area of rectangular park = 150 m²

\\

To find:

Length and breadth of park = ?

\\

Solution:

Let:

Length of rectangle be x

Breadth of rectangle be y

\\

According to the Question;

Perimeter = 50

⇒ 2(x + y) = 50

⇒ (x + y) = 50 ÷ 2

⇒ (x + y) = 25        ----- [Equation ➀]

\\

Now, Area = 150

⇒ xy = 150

⇒ x = 150 ÷ y       ------ [Equation ➁]

\\

Substitute the value of x from Equation ➁ in Equation ➀

\boldsymbol{\dfrac{150}{y}+y=25}\\\\

\dashrightarrow \: \: \sf{\dfrac{150+y^{2}}{y}=25}\\\\

\dashrightarrow \: \: \sf{150 + y^2 = 25y}\\\\

\dashrightarrow \: \: \sf{y^2 - 25y + 150 = 0}\\\\

\dashrightarrow \: \: \sf{y^2 - 15y - 10y + 150 = 0}\\\\

\dashrightarrow \: \: \sf{(y - 15) (y-10) = 0}\\\\

\therefore \: \sf{y=15 \: \: or \: \: 10}\\\\

Case 1: When y = 15,

x = 150 ÷ 15

⇒ x = 10

\\

Case 2: When y = 10,

x = 150 ÷ 10

⇒ x = 15

\\

Therefore, the dimensions are:

  • 15 m
  • 10 m
Answered by XDPrEm
0

Step-by-step explanation:

Given:

Perimeter of rectangular park = 50 m

Area of rectangular park = 150 m²

\\

To find:

Length and breadth of park = ?

\\

Solution:

Let:

Length of rectangle be x

Length of rectangle be x✭ Breadth of rectangle be y

\\

According to the Question;

Perimeter = 50

⇒ 2(x + y) = 50

⇒ (x + y) = 50 ÷ 2

⇒ (x + y) = 25        ----- [Equation ➀]

\\

Now, Area = 150

⇒ xy = 150

⇒ x = 150 ÷ y       ------ [Equation ➁]

\\

Substitute the value of x from Equation ➁ in Equation ➀

\boldsymbol{\dfrac{150}{y}+y=25}\\\\

\dashrightarrow \: \: \sf{\dfrac{150+y^{2}}{y}=25}\\\\

\dashrightarrow \: \: \sf{150 + y^2 = 25y}\\\\

\dashrightarrow \: \: \sf{y^2 - 25y + 150 = 0}\\\\

\dashrightarrow \: \: \sf{y^2 - 15y - 10y + 150 = 0}\\\\

\dashrightarrow \: \: \sf{(y - 15) (y-10) = 0}\\\\

\<strong>therefore</strong> \: \sf{y=15 \: \: or \: \: 10}\\\\

Case 1: When y = 15,

x = 150 ÷ 15

⇒ x = 10

\\

Case 2: When y = 10,

x = 150 ÷ 10

⇒ x = 15

\\

Therefore, the dimensions are:

15 m

10 m

Similar questions