The perimeter and area of a triangle are 16 cm and 12 cm' respectively. If one of its sides is 5 cm, find the
length of remaining two sides.
Answers
Answer:
5,5,6
Step-by-step explanation:
S= perimeter /2 = 16/2 = 8
A^2 = S ( S-a) ( S-b) ( S-c)
12*12 = 8 * ( 8-5) (S-b) (S-c)
144= 24* (S-b) ( S-c)
( S-b) (S-c)= 6 = 3 * 2
if we put b and c value as 5 and 6 it will be resolved
Answer:
6cm,5cm
Step-by-step explanation:
According to the question
let a side of triangle be 5cm
Perimeter=16cm.......(i)
a+b+c=16
5+b+c=16
b+c=16-5=11
therefore, b+c=11.....(ii)
Area= 12cm^2...........
here, from eqn (i)
a+b+c=16cm.........(iii)
therefore, (putting the value of a+b+c) we get
S= a+b+c/2
=16/2
=8cm
Now,
A= √S (S-a)(s-b)(s-c)
12= √8 (8-5)(8-b)(8-c)
12= √8* (3)(8-b)(8-c)
12= √24*(8-b)(8-c)
12*2= 24*(8-b)(8-c)
144/24=(8-b)(8-c)
6=(8-b)(8-c)
6=8(8-c)-b(8-c)
6=64-8c-8b+bc
6=64-8(c+b)+bc
(putting the value of (c+b) from eqn (ii) we get)
6=64-8(11)+bc
6=64-88+bc
6=-24+bc
30=bc.....(iv)
30/b=c
c=30/b
here from eqn (ii)
c+b=11
30/b+b=11
30+b^2/b=11
30+b^2=11b
b^2-11b+30=0.......(v)
solving eqn(v) we get
(b-5)(b-6)=0
either b=5 or 6
so putting the value in end (ii)
b+c=11
5+c=11
c=6
(Thank you)