Math, asked by Imgaurav5988, 1 year ago

The perimeter of a circular field is 44m. The area of the given circular field is

Answers

Answered by KarupsK
1

let r be the radius of the circular field
2\pi \: r \:  = 44
r = 7
Area of the circular field
 = \pi {r}^{2}  \\  =  \frac{22}{7}  \times 7 \times 7 \\  = 154 \: square \: m
Answered by Anonymous
32

Given: Perimeter (Circumference) of circular field is 44 m

To find: Area of circular field?

━━━━━━━━━━━━━━━━━━━━━━━

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Perimeter_{\;(circle)} = 2 \pi r}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times r = 44\\ \\ :\implies\sf \dfrac{44}{7} \times r = 44\\ \\ :\implies\sf r = \cancel{44} \times \dfrac{7}{{\cancel 44}}\\ \\ :\implies\sf r = 7\\ \\ :\implies{\boxed{\sf{\pink{r = 7\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Radius\;of\; circular\;field\;is\; {\textsf{\textbf{7\;cm}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

Area of circular field,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area_{\;(circle)} = \pi r^2}}}}\\ \\

:\implies\sf Area_{\;(field)} = \dfrac{22}{7} \times (7)^2\\ \\ :\implies\sf Area_{\;(field)} = \dfrac{22}{{\cancel 7}} \times {\cancel 7} \times 7\\ \\ :\implies{\boxed{\sf{\pink{Area_{\;(field)} = 154\;m^2\;}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Area\;of\; circular\;field\;is\; \bf{154\;m^2}.}}}

Similar questions