Math, asked by Himanaio, 5 months ago

The Perimeter of a Parallelogram ABCD is 140cm. If one of the sides is greater than the other by 10 cm , find the lengths of all the sides of the parallelogram.​

Answers

Answered by muskan474941
5

The perimeter of a parallelogram is 140 cm. If one of the sides is longer than the other by 10 cm.

Let smaller side (a) =x then longer side

(b)=x+10

Perimeter =2(a+b)=2(x+x+10)=140

Smaller side =30cm Larger side =30+10=40 cm => x=30

Answered by thebrainlykapil
69

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The Perimeter of a Parallelogram ABCD is 140cm. If one of the sides is greater than the other by 10 cm , find the lengths of all the sides of the parallelogram.

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram:- }}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\put(0.4,0.5){\bf D}\qbezier(1,1)(1,1)(1.6,4)\put(6.2,0.5){\bf C}\qbezier(1.6,4)(1.6,4)(6.6,4)\put(1,4){\bf A}\qbezier(6,1)(6,1)(6.6,4)\put(6.9,3.8){\bf B}\end{picture}

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \:Given:- }}}

  • Perimeter of the Parallelogram = 140cm
  • One is greater then the other by 10 cm

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: To \: Find\::- }}}

  • The Lengths of all the sides of the Parallelogram.

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Let AB be greater than BC by 10cm in the Parallelogram ABCD ( diagram ) and say BC is x cm long.

\qquad \quad {:} \longrightarrow \sf{\bf{ BC \: = \: x }}

\qquad \quad {:} \longrightarrow \sf{\bf{ </strong><strong>AB</strong><strong> \: = \: </strong><strong>x\</strong><strong>:</strong><strong> </strong><strong>+</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>1</strong><strong>0</strong><strong> }}

 \\

\underbrace\red{\boxed{ \sf \blue{The \: Opposite \: sides \: of \: a \: Parallelogram \: are \: Equal  }}}

\qquad \quad {:} \longrightarrow \sf{\bf{ BC \: = \: AD \: = \: x }}

\qquad \quad {:} \longrightarrow \sf{\bf{ DC \: = \: AB \: = \: x \: + \: 10}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

\begin{gathered}\begin{gathered}\underline{\boldsymbol{According\: to \:the\: Situation :}} \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: AB \: + \: BC \: + \: CD \: + \: DA \: = \: Perimeter   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{(x + 10) \: \green  +  \: x \:   \green+  \: (x + 10) \:   \green +   \: x \:  =  \: Perimeter   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{(x + 10) \: \green  +      \: (x + 10) \:   \green +   \: x \:  \green   +   \: x \: =  \: 140  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{4x \:  +  \: 20 \:  =  \: 140  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{4x  \:  =  \: 140 \:  -  \: 20  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{4x  \:  =  \: 120 }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{x  \:  =  \: \frac{120}{4}  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{x  \:  =  \:  \cancel\frac{120}{4}  }} \\

\qquad \quad {:} \longrightarrow \sf{\bf{x  \:  =  \:  30 }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 30    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

  • AB = x + 10 = 30 + 10 = 40cm
  • BC = 30cm

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ AB \: = \: DC  \: = \underline {\underline{ 40cm}}}\\\end{gathered}\end{gathered}\\

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ AD \: = \: BC  \: = \underline {\underline{ 30cm}}}\\\end{gathered}\end{gathered}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge :-

\underbrace\red{\boxed{ \sf \blue{Important \: Properties \: of \: a \: Parallelogram  }}}

  • It's Opposite sides are equal.
  • It's Opposite angles are equal.
  • It's Diagonal bisect each other.
  • It's Diagonals divide the Parallelogram into two Congruent Triangles

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions