Math, asked by yoga6167, 11 months ago

The perimeter of a rectangle and square are equal,but the area of the former is 225 sq.M less than the later.Find the length and breadth of the rectangle.

Answers

Answered by Aɾꜱɦ
3

Answer:

\boxed{a \geqslant 15}

\huge\underline\textsf{Explantion:- }

Let,L = length of the rectangle

B = breadth

A = side of Square

Now, given that

perimeter of rectangle =perimeter of square

\large\underline\textsf{ Formula Used }

=2(l+b)=4a

=l+b=2a

Now, we have given the

Area of rectangle =Are of square-225

LB= a^2

a^2-15^2

\large\underline\textsf{Identity used:- }

\boxed{(a {}^{2}  - b {}^{2} ) = (a + b)(a - b)}

Now,

LB =(a+15)(a-15)

Now ,as length is always greater than than the breadth of a rectangle.

\therefore L=a+15 and B=a-15

And ,as the length of any side is always positive so,

\boxed{a - 15 \geqslant 0 =  > a \geqslant 15}

L=a +15

& B=a-15

\boxed{a \geqslant 15}

Answered by TRISHNADEVI
5

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\  \\  \text{Perimeter of rectangle = Perimeter of } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{square} \\  \\  \text{Area of rectangle is 225 m less than the} \\  \text{ area of square.} \\  \\  \\  \underline{ \mathfrak{\:  \: Suppose, \:  \: }} \\  \\  :  \rightsquigarrow \text{ \: Length of the rectangle = l}  \\ \\   :  \rightsquigarrow \text{ \: Breadth of the rectangle = b} \\  \\    :  \rightsquigarrow \: \text{ \: Side of Square = a }

 \underline{ \text{ \: According  to  the first  condition, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{2(l+b) = 4a} \\  \\  \sf{ \implies \: l+b=2a} \\  \\

 \underline{ \text{ \: According  to  the second \: condition, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \sf{l \times b = a {}^{2}  - 225} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = a {}^{2}  - (15) {}^{2} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ =(a + 15)(a - 15)} \\  \\  \sf{ \therefore \:  \: l \times b = (a + 15)(a - 15) \:  \:  -  -  -  > (1)}

 \underline{ \mathfrak{ \:  \: We  \: know \:  \:  that, \:  \: }} \\  \\   \:  \:  \:  \:  \: \text{Length is always greater than the breadth} \\  \text{ of a rectangle.}

So, comparing L.H.S. and R.H.S. of the eq. (1), we get

  :  \rightsquigarrow  \:  \:  \:  \:  \: \tt{ \red{ l = a +15 } \:  \:  \:  and\:  \:  \:  \:  \red{ b=a-15}}

 \underline{ \mathfrak{ \:  \: Again, \:  \: }} \\  \\  \text{The length or breadth of any dimension} \\  \text{ is always positive.}

 \tt{ \therefore \:  \:  \: a  + 15 \geqslant 0 \:  \:   \:  \:  \:  \:  \: \: and \:  \:  \: \:  \:  \:  \:  a   - 15\geqslant 0} \\  \\  \tt{ \implies \: a  \geqslant 15 \:  \:   \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \: \: \:  \:  \: \:  \:  \implies  \:  a    \geqslant 15}

 \:  \:  \:  \tt{ \therefore\:  \: \red{Length, l = a  +  15 }\:  \:   \:  \:  \:  \:  \: \forall \: \:  \:  \red{a  \geqslant 15}} \\    \\ \tt{And,}\\   \\ \tt{  \:  \:  \:  \:  \:  \:  \red{Breadth,b = a   -  15 }\:  \:   \:  \:  \:  \:  \: \forall \: \:  \:    \: \red{a  \geqslant 15}}

Similar questions