Math, asked by poojamogaveer, 7 months ago

the perimeter of a rectangle is 13cm and its width is 2.75 cm find its lenth in cm

Answers

Answered by sethrollins13
64

Given :

  • Perimeter of Rectangle is 13 cm .
  • Width of Rectangle is 2.75 cm .

To Find :

  • Length of Rectangle .

Solution :

\longmapsto\tt{Width=2.75\:cm}

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+w)}

Putting Values :

\longmapsto\tt{13=2(l+2.75)}

\longmapsto\tt{\cancel\dfrac{13}{2}=l+2.75}

\longmapsto\tt{6.5=l+2.75}

\longmapsto\tt{6-2.25=l}

\longmapsto\tt\bf{3.75\:cm=l}

So , The Length of Rectangle is 3.75 cm ..

_______________________

  • Area of Rectangle = length × width
  • Perimeter of Rectangle = 2(l+w)
  • Diagonal of Rectangle = √(l)² + (b)²
  • Area of Square = (Side)²
  • Perimeter of Square = 4 × Side
  • Diagonal of Square = √2a

_______________________

Answered by Berseria
39

Question :

To find length of a rectangle rectangle.

Solution :

  • Given :

✰ Perimeter = 13 cm

✰ Width = 2.75 cm

  • To find length :

We know that,

{\boxed{\bf{\underline{perimetre \:of \: rectangle \:  = 2 \times (l + b) }}}}

  • l = Length
  • b = breadth or width.

Let,

Length be x,

  : \implies\sf 2 \times( l + b)

 : \implies\sf \: 2 \times (x + 2.75) = 13

 : \implies\sf \: 2 \times x + 2 \times 2.75 = 13

 : \implies\sf2x + 5.5 = 13

 : \implies\sf2x = 13 - 5.5

 : \implies\sf \: 2x = 7.5

 : \implies\sf \: x =  \frac{7.5}{2}  = 3.75

\bf \: x = 3.75 \: cm

\bf \: length \:  = 3.75 \: cm

  • Length of Rectangle is 3.75 cm

✰lets verify :

\sf \: =  >  2 \times (3.75 + 2.75)

 =  >\sf 2 \times 6.5

\sf =  > 13 \: cm

Hence Solved!!

Similar questions