Math, asked by nino92, 9 months ago

The perimeter of a rectangle is 22 cm and area is 30 sq. cm. What is the difference of length and breadth?

Answers

Answered by krimusa7524
46

Area = L x b

30 = L x b

b = 30 / L

perimeter = 2(L + b)

22= 2(L + b)

by putting the value of b

22 = 2( L + 30/ L)

11L = L ^ 2 +30

L^2 -11L +30 = 0

L^2 - 5L - 6L + 30 = 0

L (L -5) - 6 (L -5)=0

(L-5)(L-6)

L = 5,6

by putting the value of L

b= 30/ 6 = 5cm

The difference between

L-b =6-5 =1

Answered by Sauron
67

Answer:

The difference of length and breadth is  1 cm

Step-by-step explanation:

The perimeter of a rectangle is 22 cm

The area  of a rectangle is 30 cm²

The perimeter of a rectangle =  2 (l + b)

22 = 2 (l + b)

⇒ 2l + 2b = 22

Divide by 2  

⇒ l + b = 11

⇒ l = (11 - b)

Area  =  l × b

l × b = 30

Substitute  the value of l

⇒ l = (11 - b)

⇒ (11 - b) b = 30

⇒ - b² + 11b  = 30

⇒ - b² + 11b - 30 = 0

⇒ - 1 (- b² + 11b - 30)  = 0

⇒ b² - 11b + 30 = 0

⇒ b² - 5b - 6b + 30 = 0

⇒ b (b - 5) - 6 (b + 5) = 0

⇒ (b - 5) (b - 6)

∴Breadth  =  5 cm

Length = 6 cm

The difference of length and breadth :

⇒ Length = 6 cm

⇒ Breadth  =  5 cm

⇒ 6 - 5 = 1

Therefore ,

The difference of length and breadth is  1 cm

Similar questions