Math, asked by prakashu8439, 3 months ago

The perimeter of a rectangle is 22 cm. If its breadth is 4 cm, its length is

Answers

Answered by Anonymous
112

AnswEr :

◗The perimeter of a rectangle = 22 cm

◗ Breadth of rectangle = 4 cm

◗ Length of rectangle = ?

Let the Length of the rectangle be 'L' cm.

According to the Question :

↠Perimeter of rectangle = 2(Length + Breadth)

↠22 = 2(L + 4)

↠22 = 2L + 8

↠22 - 8 = 2L

↠14 = 2L

↠14 ÷ 2 = L

↠7 cm = L

∴ Length of the rectangle is 7 cm

_______________________________

V E R I F I C A T I O N :

↠22 = 2(L + 4)

↠22 = 2(7 + 4)

↠22 = 2 × 11

↠22 = 22

Hence, Verified !

Extra Information :-

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by Anonymous
15

AnswEr-:

\mathrm {\bf{Given-:}}\\

  • The perimeter of a rectangle is 22 cm.

  • The Breadth of a rectangle is 4cm.

\mathrm {\bf{To\:Find-:}}\\

  • The Length of Rectangle.

\sf{\bf{ \underline {\dag{ Solution \:of\:Question \:-:}}}}\\

  • \underbrace {\mathrm {\bf{ Understanding \:The\:Concept-:}}}\\

  • We have to find the Length of Rectangle when Perimeter and Breadth is given .

  • Now Putting the Given Values [ Perimeter and Breadth] in Formula for Perimeter of Rectangle.

  • By this We can get , The Length of Rectangle.

_______________________________________

\sf{\bf{ \underline {\dag{ Finding \:Length \:of \:Rectangle \:-:}}}}\\

As , We know that ,

  • \underline{\boxed{\star{\sf{\red{Perimeter _{(Rectangle)}  \: = \: 2 (Length + Breadth) }}}}}

\mathrm {\bf{Here-:}}\\

  • The perimeter of a rectangle is 22 cm.

  • The Breadth of a rectangle is 4cm.

  • The Length of Rectangle is ??

Now By Putting known Values in Formula for Perimeter of Rectangle-:

  • \qquad\quad\quad:\implies { \mathrm {2 ( Length + 4) = 22cm  }}\\

  • \qquad\quad\quad:\implies { \mathrm { Length + 4 = \dfrac{22}{2}  }}\\

  • \qquad\quad\quad:\implies { \mathrm { Length + 4 = \dfrac{\cancel {22}}{\cancel {2}}  }}\\

  • \qquad\quad\quad:\implies { \mathrm { Length + 4 = 11  }}\\

  • \qquad\quad\quad\underline {\boxed{\pink{ \mathrm { Length = 7 \:cm  }}}}\\

Hence ,

  • \underline {\mathrm {\star{\pink {The \: Length \:of \: Rectangle \: is\:7 \:cm}}}}\\

________________________________________________

Verification ♡ -:

As , We know that ,

  • \underline{\boxed{\star{\sf{\red{Perimeter _{(Rectangle)}  \: = \: 2 (Length + Breadth) }}}}}

\mathrm {\bf{Here-:}}\\

  • The perimeter of a rectangle is 22 cm.

  • The Breadth of a rectangle is 4cm.

  • The Length of Rectangle is 7 cm

Now By Putting known Values in Formula for Perimeter of Rectangle-:

  • \qquad\quad\quad:\implies { \mathrm {2 ( 7 + 4) = 22cm  }}\\

  • \qquad\quad\quad:\implies { \mathrm {2 ( 11) = 22cm  }}\\

  • \qquad\quad\quad:\implies { \mathrm {22 \: cm  = 22cm  }}\\

Therefore,

  • \qquad\quad\quad:\implies { \mathrm {L.H.S = R.H.S  }}\\

  • \qquad\quad\quad:\implies { \mathrm {Hence ,\:Verified!}}\\

_________________________________________________

\large{\boxed{\sf|\:\:{\underline {More\:To\:Know-:}}\:\:|}}\\

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Parallelogram = Base × Height sq.units

  • Area of Rhombus = ½ × Diagonal 1 × Diagonal 2 sq.units.

________________________________________________

Similar questions