Math, asked by kashifa47, 24 days ago

The perimeter of a rectangle is 240 cm. if the length is decreased by 10% and its breadth increased by 20%, we get the same perimeter. find the length and breadth of the rectangle.​

Answers

Answered by anviinikam
4

Answer:

I hope this will help you

where I have written equation 1 it is 1st part

Step-by-step explanation:

Perimeter of the rectangle given = 240cm

Let x cm be the length of the rectangle,

Let y cm be the breadth of the rectangle,

Attachments:
Answered by Anonymous
25

Step-by-step explanation:

Given:-

The perimeter of a rectangle is 240 cm. if the length is decreased by 10% and its breadth increased by 20%, we get the same perimeter.

To Find:-

The length and breadth

Solution:-

 \bigstar \red{ \rm \:Let }

  • Length and breadth be x and y respectively.

 ♠ \:  \rm \: Perimeter \: of \: given \: rectangle = 240 \: cm

 \rm \: Formula \: of \: perimeter \: of \: rect. \\  \longrightarrow \boxed{ \pink{ \tt \: 2(length + breadth)}}

 \tt \: and \\  \rm \: 2(l + b) = 240 \\  \rm \dashrightarrow \: 2(x + y) = 240 \\  \rm \dashrightarrow \: x + y =  \frac{240}{2}  \\  \rm \dashrightarrow \: x + y =  \frac{ \cancel{240}}{ \cancel {2}}  -  -  - (i)

 \rm \: Now \\ \\   \rm \:  \bigstar \: New \: length =    x - 10\% \: of \: x \\   \implies \rm \: x -  \frac{x}{10}  \\  \implies  \rm \:  \frac{10x - x}{10}  \\  \implies \rm \:  \frac{9x}{10}  \\  \\  \rm \:  \bigstar \: New \: breadth = y + 20\% \: of \: y \\  \implies \rm \: y +  \frac{y}{5  }  \\  \implies \rm \:  \frac{5y + y}{5}  \\  \rm \implies  \frac{6y}{5}

Now, given is that that the perimeter of New length and breadth is equal to the original perimeter, so

 \rm 2(length + breadth) = 240 \\\rm \longrightarrow2 \bigg( \:  \frac{9x}{10}   +  \frac{6y}{5}  \bigg) = 240  \\ \rm \longrightarrow \:  \frac{9x}{10}  +  \frac{6y}{5}  = \cancel{ \frac{240}{2}  } \\ \rm \longrightarrow \frac{9x + 12y}{10}  = 120 \\ \rm \longrightarrow9x + 12y = 120 \times 10 = 1200 -  -  - (ii)

Multiplying (i) by 9 and then subtracting it from (ii)

 \rm \: 9(x + y = 120) \\   \rm \leadsto \: 9x + 9y = 1080 \\  \\  \rm \: 9x + 12y = 1200 \\  \rm \: 9x + 9y = 1080 \\  -   \:  \:   \: -   \:  \:  \:  \:  \:  \:  \: \:  \:  -  \\  \rm \:  -  -  -  -  -  -  -  -  -  -  \\  \rm \: 3y = 120 \\  \rm \: y =   \cancel{\frac{ 120}{3} } \\  \rm  \red{\boxed{ \rm \: y = 40 \: m}} \\   \\ \rm \: Putting \: y \: in \: (i) \: equation \\  \\  \rm \: x + y = 120 \:  \\  \implies \rm \: x + 40 = 120 \\  \implies \: \rm \: x = 120 - 40 \\   \implies \red{ \boxed{  \rm \: 80 \: m}}

So,

Length = 80 m

Breadth = 40 m

Similar questions