Math, asked by RizaaAfreen, 3 months ago

The perimeter of a rectangle is 44 cm. If one of the two adjacent sides is 1.8 cm longer than the other, what are the lengths of the sides?​

Answers

Answered by ItzShinyQueenn
4

  \mathcal{ \underline{Given:- }}

• \sf \: The  \: perimeter  \: of  \: a  \: rectangle  \: is \:  44  \: cm.

• \sf \: One  \: of \:  the  \: two  \: adjacent \:  sides \:  is \:  1.8  \: cm  \: longer \:  than  \: the  \: other.

  \mathcal{\underline{To \:  Find :- }}

• \sf \: The  \: lengths  \: of  \: the \:  sides.

\huge \mathcal{ \underline{Solution :- }}

 \sf{We  \: know \:  that, }

 \bf \red{ \star \: {Perimeter  \: of  \: a  \: rectangle  \: = \:  2 (length + breadth) \:  unit}}

 \sf{According \:  to \:  the  \: question, }

 \sf\: {Let \:  the \:  length  \: be \:  x \: cm }

 \therefore \sf breadth \: will \: be \: (x + 1.8) \: cm

 \therefore \sf44 = 2(x + x + 1.8)

 \rightarrow \sf44 = 2(2x + 1.8)

 \rightarrow \sf22 = 2x + 1.8

 \rightarrow \sf2x + 1.8 = 22

 \rightarrow \sf2x = 20.2

 \rightarrow \sf x= 10.1

 \sf \pink{Therefore, \:  length \:  is  \: 10.1  \: cm \:  and}

 \sf \pink{breadth \: is \: (10.1 + 1.8) \: cm = 11.9 \: cm}

\\

 \bf \underline{Correction \:  Test}

 \sf{Perimeter \:  of \:  the \:  rectangle =2(10.1 + 11.9) \: cm }

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =( 2 \times 22) \: cm

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =44 \: cm

 \bf{Hence, Answers  \: are  \: 10.1  \: cm  \: and  \: 11.9 \:  cm. }

Answered by Flaunt
173

Given

Perimeter of Rectangle=44cm

One side is 1.8cm longer than the other side

To Find

Length of the sides

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf According \:to \:the \:question

Let the one side of Rectangle be 'x'

and the other be 1.8+x[given]

\sf\boxed{\bold {Perimeter \:of \:Rectangle \:=2(length+breadth)}}

\sf \longmapsto 44=2[x+(1.8+x)]

\sf \longmapsto44=2(2x+1.8)

\sf\longmapsto22=2x+1.8

\sf \longmapsto22-1.8=2x

\sf\longmapsto 2x=20.2

\sf\large \bold{x=10.1}

\sf Other \:side =1.8+x=1.8+10.1=11.9

∴length is \bold{\red{11.9 cm}}

breadth is \bold{\red{10.1 cm}}

Check

\sf Perimeter \:of\: Rectangle =2(l+b)

\sf\longmapsto2(10.1+11.9)

\sf \longmapsto2(22)

\sf\longmapsto44

Similar questions