Math, asked by Shivanir145, 5 months ago

.The perimeter of a rectangle is 64 m. If one side of the rectangle is 20 m, what is the
other side? What is its area?

Answers

Answered by Anonymous
77

GIVEN :-

Perimeter = 64m

Length= 20 m

══════════════════

We have to find breadth!

\bf{\red{Perimeter}}

Perimeter of rectangle= 2(l + b )

\implies 64 = 2(20 + b)

\implies 20 + b = \dfrac{64}{2}

\implies 20 + b = 32

\implies b = 32–20

\implies \boxed{\sf{12m }}

Therefore, breadth of rectangle is 12 m

═════════════════

\bf{\red{Area }}

Area of rectangle = l × b

\implies 20 × 12

\implies \boxed{\sf{240m²}}

Therefore, Area of Rectangle is 240m²

═════════════════

Answered by ShírIey
62

\sf Given \begin{cases} & \sf{Perimeter\:of\: rectangle = \bf{64\:m}}  \\ & \sf{One\:side\;of\;rectangle = \bf{20\:m}}  \end{cases}\\ \\

To find: Other side and area of rectangle?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let's consider the other side of rectangle be x m.

⠀⠀⠀⠀

Therefore,

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

:\implies\sf 64 = 2(20 + x)\\ \\ \\ :\implies\sf 64 = 40 + 2x\\ \\ \\ :\implies\sf 2x = 64 - 40\\ \\ \\ :\implies\sf 2x = 24\\ \\ \\ :\implies\sf x = \cancel{ \dfrac{24}{2}}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{x = 12}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Thus,\:The\:other\:side\:of\:rectangle\:is\: {\textsf{\textbf{12\;m}}}.}}}\\ \\

Since, the side having measure 20 m is greater than the side having measure 12 m.

Therefore, 20 m is the length & 12 m is the breadth of Rectangle.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

Now, Finding Area of rectangle,

⠀⠀⠀

\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = length \times breadth}}}}\\ \\

:\implies\sf Area_{\;(rectangle)} = 20 \times x\\ \\ \\ :\implies\sf Area_{\;(rectangle)} = 20 \times 12\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{Area_{\;(rectangle)} = 240\:m^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:Area\:of\:rectangle\:is\: \bf{240\;m^2}.}}}

Similar questions