Math, asked by mahmed112006, 8 months ago

the perimeter of a rectangle is 64 meter and area is 207 meter square. find the length and the breath of the rectangle

Answers

Answered by BrainlicaLDoll
16

DIAGRAM :

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\linethickness{0.4mm}\put(7.7,3){\large\sf{A}}\put(7.5,2){\sf{\large{B}}}\put(7.7,1){\large\sf{B}}\put(9.3,0.7){\sf{\large{L}}}\put(11.1,1){\large\sf{C}}\put(11.1,3){\large\sf{D}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\end{picture}

GIVEN:

  • Perimeter of rectangle - \sf\:64m
  • Area of rectange - \sf\: 207{m}^{2}

TO FIND,

Length and breadth of rectangle.

LET,

  • Length of rectangle be L.
  • Breadth of rectangle be B.

\boxed{\sf{\:Area\:of\:rectangle \:=\: length\times breadth}}

\boxed{\sf{\:Perimeter\:of\:rectange\:=\: 2\times(Length + breadth)}}

\underbrace{from\:first\:condition}

\longrightarrow\sf\: L \times B = 207 \\ \\ \longrightarrow\sf \: B = \frac{207}{L}................(1)

\underbrace{from\:second\:condition}

\longrightarrow\sf\: 2 \times (L + B)= 64 \\ \\ \longrightarrow \sf\:L + B = 32.............(2)

Putting the value of B from (1) in (2)

\longrightarrow \sf \: L + \frac{207}{L}=32 \\ \\ \longrightarrow \sf\: {L}^{2} + 207 = 32 Length

\longrightarrow \sf\: {L}^{2} - 32l + 207 = 0 \\ \\ \longrightarrow\sf\: {L}^{2} - 23L - 9L +207 = 0 \\ \\ \longrightarrow \sf\: L(L - 23) - 9(L - 23) = 0 \\ \\ \longrightarrow \sf\: (L - 23)(L - 9) = 0 \\ \\ \longrightarrow \sf\: L = 23\:or\:9

\sf {Now\:putting\:the\:value\:of\:L\:in\:(1)}

\sf{If\:we\:will\:take\:L\:=\:23\:then,}

\longrightarrow \sf\:B = \frac{207}{23}= 9m

\sf{If\:we\:will\:take\:L\:=\:9\:then,}

\longrightarrow \sf\:B = \frac{207}{9}= 23m

\overbrace{\underbrace{first\:condition}}

\boxed{\sf{Length = 23m}}

\boxed{\sf{Breadth = 9m}}

\overbrace{\underbrace{Second\:condition}}

\boxed{\sf{Length = 9m}}

\boxed{\sf{Breadth = 23m}}

Answered by mohammedasrarahmed00
1

Answer:

DIAGRAM :

GIVEN:

Perimeter of rectangle - \sf\:64m64m

Area of rectange - \sf\: 207{m}^{2}207m

2

TO FIND,

Length and breadth of rectangle.

LET,

Length of rectangle be L.

Breadth of rectangle be B.

\boxed{\sf{\:Area\:of\:rectangle \:=\: length\times breadth}}

Areaofrectangle=length×breadth

\boxed{\sf{\:Perimeter\:of\:rectange\:=\: 2\times(Length + breadth)}}

Perimeterofrectange=2×(Length+breadth)

\underbrace{from\:first\:condition}

fromfirstcondition

\begin{lgathered}\longrightarrow\sf\: L \times B = 207 \\ \\ \longrightarrow\sf \: B = \frac{207}{L}................(1)\end{lgathered}

⟶L×B=207

⟶B=

L

207

................(1)

\underbrace{from\:second\:condition}

fromsecondcondition

\begin{lgathered}\longrightarrow\sf\: 2 \times (L + B)= 64 \\ \\ \longrightarrow \sf\:L + B = 32.............(2)\end{lgathered}

⟶2×(L+B)=64

⟶L+B=32.............(2)

Putting the value of B from (1) in (2)

\begin{lgathered}\longrightarrow \sf \: L + \frac{207}{L}=32 \\ \\ \longrightarrow \sf\: {L}^{2} + 207 = 32 Length\end{lgathered}

⟶L+

L

207

=32

⟶L

2

+207=32Length

\begin{lgathered}\longrightarrow \sf\: {L}^{2} - 32l + 207 = 0 \\ \\ \longrightarrow\sf\: {L}^{2} - 23L - 9L +207 = 0 \\ \\ \longrightarrow \sf\: L(L - 23) - 9(L - 23) = 0 \\ \\ \longrightarrow \sf\: (L - 23)(L - 9) = 0 \\ \\ \longrightarrow \sf\: L = 23\:or\:9\end{lgathered}

⟶L

2

−32l+207=0

⟶L

2

−23L−9L+207=0

⟶L(L−23)−9(L−23)=0

⟶(L−23)(L−9)=0

⟶L=23or9

\sf {Now\:putting\:the\:value\:of\:L\:in\:(1)}NowputtingthevalueofLin(1)

\sf{If\:we\:will\:take\:L\:=\:23\:then,}IfwewilltakeL=23then,

\longrightarrow \sf\:B = \frac{207}{23}= 9m⟶B=

23

207

=9m

\sf{If\:we\:will\:take\:L\:=\:9\:then,}IfwewilltakeL=9then,

\longrightarrow \sf\:B = \frac{207}{9}= 23m⟶B=

9

207

=23m

\overbrace{\underbrace{first\:condition}}

firstcondition

\boxed{\sf{Length = 23m}}

Length=23m

\boxed{\sf{Breadth = 9m}}

Breadth=9m

\overbrace{\underbrace{Second\:condition}}

Secondcondition

\boxed{\sf{Length = 9m}}

Length=9m

\boxed{\sf{Breadth = 23m}}

Breadth=23m

Similar questions