the perimeter of a rectangle is 64 meter and area is 207 meter square. find the length and the breath of the rectangle
Answers
DIAGRAM :
GIVEN:
- Perimeter of rectangle -
- Area of rectange -
TO FIND,
Length and breadth of rectangle.
LET,
- Length of rectangle be L.
- Breadth of rectangle be B.
Putting the value of B from (1) in (2)
Answer:
DIAGRAM :
GIVEN:
Perimeter of rectangle - \sf\:64m64m
Area of rectange - \sf\: 207{m}^{2}207m
2
TO FIND,
Length and breadth of rectangle.
LET,
Length of rectangle be L.
Breadth of rectangle be B.
\boxed{\sf{\:Area\:of\:rectangle \:=\: length\times breadth}}
Areaofrectangle=length×breadth
\boxed{\sf{\:Perimeter\:of\:rectange\:=\: 2\times(Length + breadth)}}
Perimeterofrectange=2×(Length+breadth)
\underbrace{from\:first\:condition}
fromfirstcondition
\begin{lgathered}\longrightarrow\sf\: L \times B = 207 \\ \\ \longrightarrow\sf \: B = \frac{207}{L}................(1)\end{lgathered}
⟶L×B=207
⟶B=
L
207
................(1)
\underbrace{from\:second\:condition}
fromsecondcondition
\begin{lgathered}\longrightarrow\sf\: 2 \times (L + B)= 64 \\ \\ \longrightarrow \sf\:L + B = 32.............(2)\end{lgathered}
⟶2×(L+B)=64
⟶L+B=32.............(2)
Putting the value of B from (1) in (2)
\begin{lgathered}\longrightarrow \sf \: L + \frac{207}{L}=32 \\ \\ \longrightarrow \sf\: {L}^{2} + 207 = 32 Length\end{lgathered}
⟶L+
L
207
=32
⟶L
2
+207=32Length
\begin{lgathered}\longrightarrow \sf\: {L}^{2} - 32l + 207 = 0 \\ \\ \longrightarrow\sf\: {L}^{2} - 23L - 9L +207 = 0 \\ \\ \longrightarrow \sf\: L(L - 23) - 9(L - 23) = 0 \\ \\ \longrightarrow \sf\: (L - 23)(L - 9) = 0 \\ \\ \longrightarrow \sf\: L = 23\:or\:9\end{lgathered}
⟶L
2
−32l+207=0
⟶L
2
−23L−9L+207=0
⟶L(L−23)−9(L−23)=0
⟶(L−23)(L−9)=0
⟶L=23or9
\sf {Now\:putting\:the\:value\:of\:L\:in\:(1)}NowputtingthevalueofLin(1)
\sf{If\:we\:will\:take\:L\:=\:23\:then,}IfwewilltakeL=23then,
\longrightarrow \sf\:B = \frac{207}{23}= 9m⟶B=
23
207
=9m
\sf{If\:we\:will\:take\:L\:=\:9\:then,}IfwewilltakeL=9then,
\longrightarrow \sf\:B = \frac{207}{9}= 23m⟶B=
9
207
=23m
\overbrace{\underbrace{first\:condition}}
firstcondition
\boxed{\sf{Length = 23m}}
Length=23m
\boxed{\sf{Breadth = 9m}}
Breadth=9m
\overbrace{\underbrace{Second\:condition}}
Secondcondition
\boxed{\sf{Length = 9m}}
Length=9m
\boxed{\sf{Breadth = 23m}}
Breadth=23m