Math, asked by YeHamHai, 3 months ago

The perimeter of a rectangle is 68m and its length is 24m. Find its beadth, area and diagonal.​

Answers

Answered by reddysaritham
1

Step-by-step explanation:

Answer: The breadth is 10 m, the area is 240 m² and the diagonal is 28 m.

Answered by wtfhrshu
83

\frak{Given}\begin{cases}\sf{Perimeter\;of\;the\;rectangle=\bf{68\;m}}\\\sf{Length\;of\;the\;rectangle=\bf{24\;m}}\end{cases}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Need to find: The breadth, area and diagonal of the rectangle.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{\underline{\dag\frak{\;As\;we\;know\;that\;:}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\star\;\boxed{\pink{\sf{Perimeter_{(rectangle)}=2(l+b)}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

where,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • l is the length of the rectangle and b is the breadth of the rectangle and perimeter of the rectangle is given that is 68m.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf{68=2(24+b)}\\\\\\:\implies\sf{68=48+2b}\\\\\\:\implies\sf{68-48=2b}\\\\\\:\implies\sf{20=2b}\\\\\\:\implies\sf{b=\cancel{\dfrac{20}{2}}}\\\\\\:\implies{\underline{\boxed{\pink{\frak{b=10\;m}}}}}{\;\bigstar}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{Hence,\;the\;breadth\;of\;the\;rectangle\;is\;\bf{10\;m}}.}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

★ To calculate area of rectangle formula is given by :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\star\;\boxed{\purple{\sf{Area_{(rectangle)}=(Length×Breadth)}}}\\\\\\:\implies\sf{Area_{(rectangle)}=(24×10)\;m^2}\\\\\\:\implies{\underline{\boxed{\pink{\frak{Area_{(rectangle)}=240\;m^2}}}}}{\;\bigstar}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{Hence,\;the\;area\;of\;the\;rectangle\;is\;\bf{240\;m^2}}.}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{\underline{\dag\frak{\;By\;using\;formula\;:}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\star\;\boxed{\purple{\sf{Diagonal_{(rectangle)}=\sqrt{l^2+b^2}}}}\\\\\\:\implies\sf{Diagonal_{(rectangle)}=\sqrt{(24)^2+(10)^2}}\\\\\\:\implies\sf{Diagonal_{(rectangle)}=\sqrt{576+100}}\\\\\\:\implies\sf{Diagonal_{(rectangle)}=\sqrt{676\;m}}\\\\\\:\implies{\underline{\boxed{\pink{\frak{Diagonal_{(rectangle)}=26\;m}}}}}{\;\bigstar}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{Hence,\;the\;length\;of\;the\;diagonal\;is\;\bf{26\;m}}.}}

Similar questions