Math, asked by sundarallu3864, 6 months ago

The perimeter of a rectangle is 68metre and its length is twice metre more than thrice the breadth. What are its length and breadth

Answers

Answered by gargnitika2005
2

Step-by-step explanation:

To find the area, we must first find out the measurements of the rectangle’s length and breadth (as Area = Length * Breadth)

l = length

b = breadth

We know the length is twice the breadth, therefore l = 2b

We also know that the perimeter p = 60m and can also be expressed as a sum of its sides where p = l + l + b + b = 60 which simplified is:

60 = 2l + 2b

Now we have 2 variables, but thankfully we were given a ratio (l = 2b) relating the two. Substituting 2b in for l gives us:

60 = 2(2b) + 2b = 4b + 2b = 6b

60 = 6b

b = 10 m

Now that we know the breadth we can find the length:

l = 2b → l = 2(10) = 20 → l = 20 m

With a breadth of 10 m and a length of 20 m, we can now find the area which is found by Area = Length * Breadth:

A = l*b = 20m * 10m = 200m^2 → A = 200 m^2

Similar questions