Math, asked by ak6204438714, 1 year ago

The perimeter of a rectangle is 70cm less than its width is 5cm less than the length find the area

Answers

Answered by SillySam
0
HEYA MATE, HERE IS UR ANSWER


Perimeter =70 cm

Let the length be x cm .

Then according to the question

Breadth = x-5

Perimeter =2 (l+b)

70=2 (x+x-5)

70=2 (2x-5)

\frac{70}{2}=2x-5

35=2x-5

35+5=2x

40=2x

\frac{40}{2}=x

20=x

<b><i>Length=x

=20 cm


Breadth =x-5

=20-5

=15 cm

\mathbb{Be\:Brainly}
Answered by silentlover45
12

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: Perimeter \: \: \leadsto  \: {70cm}
  • \: \: \: \: \: \: \: width \: \: \leadsto  \: \: {5cm}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: find \: \: the \: \: area ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \: the \: \: length \: \: be \: \: x \: \: cm.
  • \: \: \: \: \: \: \: Let \: \: the \: \: width \: \: be \: \: {(x \: - \: {5})} \: \: cm.

\: \: \: \: \: \: \: \therefore \: The \: \: perimeter \: \: of \: \: a \: \: rectangle \: \: \leadsto \: \: {2} \: {(l \: + \: w)}

\: \: \: \: \: \: \: \leadsto  \: \: {70} \: \: = \: \: {2} \: {({x} \: + \: {x} \: - \: {5})}

\: \: \: \: \: \: \: \leadsto  \: \: {70} \: \: = \: \: {2} \: {({2x} \: - \: {5})}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{70}{2} \: \: = \: \: {2x} \: - \: {5}

\: \: \: \: \: \: \: \leadsto  \: \: {35} \: \: = \: \: {2x} \: - \: {5}

\: \: \: \: \: \: \: \leadsto  \: \: {35} \: + \: {5} \: \: = \: \: {2x}

\: \: \: \: \: \: \: \leadsto  \: \: {40} \: \: = \: \: {2x}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: \frac{40}{2}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: {20}

  • \: \: \: \: \: \: \: length \: \: \leadsto \: \: {20}

  • \: \: \: \: \: \: \: width \: \: \leadsto \: \: {x \: - \: {5}}

\: \: \: \: \: \: \: \leadsto \: \: {{20} \: - \: {5}}

\: \: \: \: \: \: \: \leadsto \: \: {15}

\: \: \: \: \: \: \: \therefore Area \: \ of \: \: a \: \: rectangle \: \: \leadsto \: \: {{l} \: \times \: {w}}

\: \: \: \: \: \: \: \leadsto \: \: {{20} \: \times \: {15}}

\: \: \: \: \: \: \: \leadsto \: \: {300} \: {cm}^{2}

  • \: \: \: \: \: \: \: Hence, \: \: Area \: \: of \: \: rectangle \: \: is  \: \: {300cm}^{2}.

\underline\mathfrak{Important \: \: formula:-}

  • \: \: \: \: \: \: \: Area \: \: of \: \: rectangle \: \: \leadsto {l} \: \times \: {w}
  • \: \: \: \: \: \: \: Perimeter \: \: of \: \: rectangle \: \: \leadsto {2} \: {({l} \: + \: {w})}
  • \: \: \: \: \: \: \: Diagonal \: \: of \: \: rectangle \: \: \leadsto \sqrt{{l}^{2} \: + \: {w}^{2}}

__________________________________

Similar questions