Math, asked by parishmitabarman27, 5 months ago

The perimeter of a rectangle is equal to the perimeter of the square of side 15cm. if the side of the rectangle is 20 cm long, what is the breadth ?​

Answers

Answered by Anonymous
323

Given

The perimeter of a rectangle is equal to the perimeter of the square of side 15cm. if the side of the rectangle is 20 cm long.

To find

  • Breadth of the rectangle

Solution

  • Side of square = 15 cm
  • Length of rectangle = 20 cm

★ Perimeter of a rectangle = Perimeter of square

°•° Perimeter of rectangle = l × b

°•° Perimeter of square = 4 × side

→ l × b = 4 × side

→ 20 × b = 4 × 15

→ 20b = 60

→ b = 60/20

→ b = 30

•°• Breadth of a rectangle = 30 cm

Verification :

() Perimeter of rectangle = perimeter of square

→ l × b = 4 × side

→ 20 × 30 = 4 × 15

→ 60 = 60

  • Hence verified

________________________________

Answered by SuitableBoy
228

\large{\underbrace{\underline{\bf{Required\;Answer:-}}}}

 \\

\frak{Given}\begin{cases}\sf{Perimeter\:of\:Square=Perimeter\:of\:Rectangle}\\\sf{Side\:of\:Square=\bf{15\:cm}}\\\sf{Length\:of\:Rectangle=\bf{20\:cm}}\end{cases}

 \\

\bigstar\;\underline{To\:Find\::}

 \\

  • The breadth of the rectangle.

 \\

\bigstar\;\underline{Solution\::}

 \\

» In this question we are given that the perimeters of a square and a rectangle are equal.

» We would first find the perimeter of the square, then we would find the perimeter of the rectangle using the given sides.

» After finding the perimeters, we would compare them so as to get the value of length of the rectangle.

 \\

Finding the Perimeter of the Square :

 \\

We have :

  • Side of the square = 15 cm.

We know :

\odot\;\boxed{\sf Perimeter_{\:square}=4\times Side}

So,

 \colon \rarr \sf \:  perimeter _{ \: square} =4 \times 15 \: cm \\  \\  \colon \dashrightarrow \boxed{ \frak{ \pink{perimeter _{ \: square}  = 60 \: cm}}}

 \\

Finding the Perimeter of the Rectangle :

 \\

We have :

  • Length = 20 cm.

Let

  • Breadth = x cm.

We know :

\odot\;\boxed{\sf Perimeter_{\:rectangle}=2(Length+Breadth) }

So,

 \colon \rarr \sf \: perimeter _{ \: rectangle} = 2(20 + x) \: cm \\  \\  \colon \dashrightarrow \boxed{ \pink{  \frak{perimeter _{ \: rectangle} = 40 + 2x \: cm}}}

 \\

Finding the Length of the Rectangle :

 \\

We have :

  • Perimeter of Square = 60 cm.
  • Perimeter of rectangle = 40 + 2x cm.

We know -

 \colon \implies \sf \: perimeter _{ \: square} = perimeter _{ \: rectangle} \\  \\  \colon \implies \sf \: 60 = 40 + 2x \\  \\  \colon \implies \sf \: 60 - 40 = 2x \\  \\  \colon \implies \sf \:  \cancel2x =  \cancel{20} \\  \\  \colon \dashrightarrow \underline{ \boxed{ \red{ \bf{x} =  \frak{10 }}}}

 \\

\therefore\;\underline{\sf The \:Breadth\:of\:the\:Rectangle\:is\:\bf{10\:cm}}

 \\

_____________________________

Similar questions