The perimeter of a rectangle is numerically equal to its area. If the width of a rectangle is 2 ³/₄ cm. , then its length is ________.
Answers
Answered by
0
Answer:
Let the length of rectangle be l and width be b ,
b = 11/4
Area of rectangle = l×b
Perimeter of rectangle = 2(l + b)
Now,
According to question,
\begin{gathered} 2(l + b) = l \times b \\ \\ 2(l + \frac{11}{4} ) = l \times \frac{11}{4} \\ \\ 2l + \frac{11}{2} = \frac{11l}{4} \\ \\ 2l - \frac{11l}{4} = - \frac{11}{2} \\ \\ \frac{8l - 11l}{4} = - \frac{11}{2} \\ \\ - \frac{3l}{4} = - \frac{11}{2} \\ \\ l = - \frac{11}{2} \times - \frac{4}{3} \: \\ \\ l = \frac{22}{3} \ \ cm \end{gathered}
2(l+b)=l×b
2(l+
4
11
)=l×
4
11
2l+
2
11
=
4
11l
2l−
4
11l
=−
2
11
4
8l−11l
=−
2
11
−
4
3l
=−
2
11
l=−
2
11
×−
3
4
l=
3
22
cm
[/tex]
Step-by-step explanation:
mark me as brainliest
Similar questions