Math, asked by ZICKAEL, 9 months ago

the perimeter of a rectangular field is 100m.if the area of the field is 600 sq.m find the dimensions of the field.​

Answers

Answered by Anonymous
122

Given

  • Perimeter of a rectangular field = 100m
  • Area of rectangular field= 600m²

Find out

  • Dimensions of the field

Solution

Let the length of rectangular field be x and its breadth be y

Perimeter of field = 100 m

➟ 2(x + y) = 100

➟ x + y = 50

➟ x = (50 - y) ----(i)

Now,

Area of field = 600 m²

➟ xy = 600

Put the value of x

➟ (50 - y)y = 600

➟ 50y - y² = 600

➟ - y² + 50y - 600 = 0

Split middle term

➟ - y² + 30y + 20y - 600 = 0

➟ - y(y - 30) + 20(y - 30) = 0

➟ (y - 30)(- y + 20) = 0

Either

➟ (y - 30) = 0

➟ y = 30 m

Or

➟ (- y + 20) = 0

➟ - y = - 20

➟ y = 20 m

Put the values of y in eqⁿ (i)

Case : 1

  • y = 30 m

➟ x = (50 - y)

➟ x = 50 - 30

➟ x = 20 m

Case : 2

  • y = 20 m

➟ x = (50 - y)

➟ x = 50 - 20

➟ x = 30 m

Hence,

  • Length of field = 20 m or 30 m
  • Breadth of field = 30 m or 20 m
Answered by Anonymous
8

Given that ,

  • Perimeter of rectangle = 100 m
  • Area of rectangle = 600 m²

Let , length and breadth of a rectangle be " x " And " y "

Thus ,

2(x + y) = 100 --- (i)

xy = 600 --- (ii)

From eq (i) and eq (ii) , we get

 \sf \mapsto 2( \frac{600}{y} + y ) = 100 \\  \\ \sf \mapsto   600 +  {(y)}^{2} = 50y \\  \\   \sf \mapsto {(y)}^{2}   - 50y + 600 = 0 \\  \\ \sf \mapsto   {(y)}^{2}  - 30y - 20y + 600 = 0 \\  \\  \sf \mapsto y(y - 30) - 20(y - 30) = 0 \\  \\  \sf \mapsto (y - 20)(y - 30) = 0 \\  \\ \sf \mapsto  y = 20 \:  \: or \: \: y = 30

Put the values of y in eq (i) , we get

 \sf \mapsto2(x + 20) = 100 \:  or  \: 2(x + 30) = 100 \\  \\ \sf \mapsto </p><p>x + 20 = 50 \:  or  \: x + 30 = 50 \\  \\  \sf \mapsto</p><p>x = 30  \: or  \: x = 20

 \therefore \sf \underline{The  \: length  \: and  \: brea dth  \: of \:  a  \: rectangle \:  are  \: </p><p>30 \:  cm \:  or \:  20 \:  cm \:  and \:  20 \:  or  \: 30  \: cm}

Similar questions