Math, asked by hitarthdesai47, 3 months ago

The perimeter of a rectangular field is 240 metres. If its length is 90 m find:
i) Its Breadth
ii) Its area ​

Answers

Answered by Anonymous
240

Given:

  • The perimeter of a rectangular field is 240m
  • The Length of the rectangular field is 90m

To Find:

  • The breadth of the rectangle
  • The area of the rectangle

Solution:

According to the question, we have the perimeter of the rectangle and the length of the rectangle and we have to find its breadth

❍Let the breadth of the rectangle be X

 \\

As we know that,

 \:  \:  \:  \:  \star{ \blue{ \boxed{ \tt{perimeter \: of \: a \: rectangle = 2(l + b)}}}}

 \\

Where,

  • L stands for {\bf{\pink{Length}}}
  • B stands for {\bf{\pink{Breadth}}}

After Substitution we get,

 \\

 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { : \implies} \sf \: \: perimeter = 2(l + b) \\  \\  \\ \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:     { : \implies} \sf240 = 2(90 + x) \\  \\  \\\:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:   { : \implies} \sf240 = 180 + 2x \\  \\  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   { : \implies} \sf2x = 240 - 180 \\  \\  \\   { : \implies} \sf2x = 60  \:  \:  \: \\  \\   \\  { : \implies} \sf \: x =   \cancel\frac{60}{2}  \\  \\  \\ \:  \:   { : \implies} { \boxed{\sf{ \: x = 30}}}

 \\

  • Henceforth, The breadth of the rectangle is 30m

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━━━━

 \\

Now, let's find the area of the rectangle

 \\

 \underline{ \frak{As \: we \: know \: that}}

 \:  \:  \:  \:  \:  \:  \star{ \pink{ { \boxed{ \tt{area _{(rectangle) } = lenght \times breadth}}}}}

 \\

Substituting the values we get,

 \\

 { : \implies} \sf \: area \:  = l \times b \:  \:  \:  \:  \\  \\  \\  { : \implies} \sf \: area = 90 \times 30 \\  \\  \\  { : \implies} \sf \: area = 2700 {m}^{2}  \:  \:

 \\

  • Hence the area of the rectangle is 2700m²

Diagram:

\begin{gathered}  \pink{\tt90m} \: \: \: \: \: \: \: \: \: \: \: \\ \pink{\boxed{\begin{array}{}\bf { \red{}}\\{\qquad \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{}\\ { \sf{ }}\\ { \sf{ }} \\ \\ { \sf{ }}\end{array}}} \pink{ \tt \:30m} \end{gathered}

Additional Info:

★Area of a rectangle = length × breadth

★ Area of a square = side × side

★ Area of a triangle = ½ × base × hieght

★ Area of a rhombus = d₁ × d₂ / 2

★ Area of a parallelogram = base × hieght

★ Perimeter of square = 4 × side

Answered by Anonymous
104

Given:-

  • Perimeter of Rectangular field is 240m
  • Length (L) of Rectangular field is 90m

To Find:-

  • Breadth (B) of Rectangular Field
  • Area of Rectangular Field

Formule Used:-

  • Area of Rectangle = Length × Breadth
  • Perimeter of Rectangle = 2 × (L + B)

⠀⠀

D I A G R A M

\begin{gathered}\begin{gathered} \:  \:  \sf 90m \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \begin{gathered}\begin{gathered} \:  \:  \:  \:  \:  \:  \:  \: \boxed{\begin{array}{}\bf {\red{}}\\{\qquad \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{}\\ { \sf{ }}\\ { \sf{ }} \\ \\ { \sf{ }}\end{array}}\end{gathered}\end{gathered} \sf 30m\end{gathered}\end{gathered}

⠀⠀⠀⠀

Solution with Step by step Explanation:-

Perimeter of Rectangular field = 240metres

Length of Rectangular field = 90m

Let the Breadth be = b

⠀⠀

\:  \:  {\underline{\bf{\dag}\:\:{\frak{~As~we~know~that:}}}}

⠀⠀

\:\:\:\star\: {\boxed{\sf{\pink{~Perimeter_{(Rectangle)} = 2(\:L \:+\:B)}}}}

⠀⠀

\:\:\:\:{\underline{\bf{\dag}{\frak{~Substituting ~the ~Value}}}}

⠀⠀⠀⠀

\begin{gathered}\;\;:\implies\sf{Perimeter_{(Rectangle)} = 2(\;L\;+\;B)}\\\\\\ :\implies\sf{\; 2(\:90\;+\;b) = 240}\\\\\\ :\implies\sf{\;90\;+\:b\;  }  =  \sf\dfrac{240 }{2}  \sf \: = 120m\\\\\end{gathered}

⠀⠀

Now,

Breadth = 120 - 90

⠀⠀⠀⠀⠀ = 30m is the Breadth

⠀⠀

V E R I F I C A T I O N

Perimeter of Rectangle = 2 ( Length + Breadth)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 2 ( 90 + 30 )

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 2 × 120

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 240m

Hence, 30 is the Breadth.

⠀⠀

______________________________________

\:  \:  {\underline{\bf{\dag}\:\:{\frak{~As~we~know~that:}}}}

⠀⠀⠀⠀

\:\:\:\star\: {\boxed{\sf{\pink{~area_{(Rectangle)} = \:L \: \times \:B \: }}}}

⠀⠀⠀⠀

Area of Rectangle = Length × Breadth

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 90 × 30

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 2700m²

⠀⠀⠀⠀

{\underline{\sf{ Hence, \:  {\pmb{30m \:}} is\:Breadth\: \:and\:Area\:is\:{\pmb{2700m}^{2}} }}}

⠀⠀⠀⠀

More Formulae Related to Concept:

  • Area of Rectangle = Length × Breadth
  • Perimeter of Rectangle = 2 × (L + B)
  • Area of Square = Side × Side
  • Perimeter of Square = 4 × Side
  • Area of Parallelogram = Base × Height
  • Area of Circle = \sf{\pi r^2 }
  • Circumference of Circle = \sf{ 2 \pi r}
  • Area of Triangle= ½ × Base × Height
Similar questions