Math, asked by smbakali, 11 months ago

The perimeter of a rectangular field is 88 metre and its area is 420 square
metre. Find the length and the breadth of the rectanguler field.​

Answers

Answered by Anonymous
32

Given :

  • Perimeter of the rectangle is 88 m.
  • Area of the rectangle is 420

To Find :

  • Length of the rectangle.
  • Breadth of the rectangle.

Solution :

Let the length of the rectangle be x m.

Let the breadth of the rectangle be y m.

Case 1 :

The perimeter of the rectangle is 88 m.

Equation :

\sf{\longrightarrow{Perimeter\:=\:2(length\:+\:breadth)}}

\sf{\longrightarrow{88=2(x+y)}}

\sf{\longrightarrow{\dfrac{88}{2}\:=\:x+y}}

\sf{\longrightarrow{44=x+y}}

\sf{\longrightarrow{44-y=x\:\:\:\:\:(1)}}

Case 2 :

The area of the rectangle is 420 .

Equation :

\sf{\longrightarrow{Area\:=\:length\:\times\:breadth}}

\sf{\longrightarrow{420=x\:\times\:y}}

\sf{\longrightarrow{420=(44-y)y}}

\sf{\longrightarrow{420=44y-y^2}}

\sf{\longrightarrow{44y-y^2=420}}

\sf{\longrightarrow{-44y+y^2=-420}}

\bold{\Big[Dividing\:by\:minus\Big]}

\sf{\longrightarrow{y^2-44y+420=0}}

\sf{\longrightarrow{y^2-30y-14y+420=0}}

\sf{\longrightarrow{y(y-30)-14(y-30)=0 }}

\sf{\longrightarrow{(y-30) (y-14) =0}}

\sf{\longrightarrow{y-30=0\:\:\:or\:\:\:y-14=0}}

\sf{\longrightarrow{y=30\:\:\:or\:\:\:\:y=14}}

When, y = 30 m,

\sf{\longrightarrow{44-y=x}}

\sf{\longrightarrow{44-30=x}}

\sf{\longrightarrow{14=x}}

\large{\boxed{\bold{Length\:of\:rectangle\:=\:x\:=\:14\:m}}}

\large{\boxed{\bold{Breadth\:of\:rectangle\:=\:y\:=\:30\:m}}}

When, y = 14 m,

\sf{\longrightarrow{44-y=x}}

\sf{\longrightarrow{44-14=x}}

\sf{\longrightarrow{30=x}}

\large{\boxed{\bold{Length\:of\:rectangle\:=\:x\:=\:30\:m}}}

\large{\boxed{\bold{Breadth\:of\:rectangle\:=\:y\:=\:14\:m}}}

Answered by vikram991
44

\huge{\bf{\underline{\purple{Solution :}}}}

Given,

  • Perimeter of Rectangular field = 88 m
  • Area of Rectangular field = 420 m²

To Find,

  • Length and breadth of the rectangular field = ?

Solution,

Suppose the length of Rectangular field be a

And , Suppose the breadth be b

\boxed{\bold{\red{According \ to \ Question :}}}

\implies \bold{ Perimeter \ of \ Perimeter = 2(a +b)}

\implies \bold{2(a + b) = 88}

\implies \bold{a + b = \frac{88}{2}}

\implies \bold{a + b = 44}

\implies \boxed{\bold{ a = 44 - b}}........1) Equation

\boxed{\bold{\red{Now \ Again \ According \ to \ Question :}}}

\implies \bold{Area \ of \ Rectangle = a \times b}

\implies \bold{(44 - b) \times b}}

From First Equation :

\implies \bold{(44b  - b^{2} ) = 420 }

\implies \bold{b^{2} - 44b + 420 = 0}

\bold{\red{Use \ Middle \ term \ splitting \ method :}}

\implies \bold{b^{2} - 30b -14b + 420 = 0}

\implies \bold{b( b - 30) - 14 (y - 30) = 0}

\implies \bold{(b - 30) ( b - 14) = 0}

\implies \bold{ b - 30 = 0 \ or\  b - 14 = 0}

\implies \bold{\therefore b = 30 \ or \ b = 14}

If Breadth = 30 then,

\implies \bold{ 44 - b = a}

\implies \bold{44 - 30 = a}

\implies \bold{a = 14}

∴Length = 14 and Breadth = 30

If Breadth = 14 then,

\implies \bold{44 - b = a}

\implies \bold{ 44 - 14 = a}

\implies \bold{a = 30}

∴Length = 30 and Breadth = 14

\rule{200}2

Similar questions