Math, asked by ishikagoswami82, 8 months ago

The perimeter of a rectangular garden,
whose length is 4 m more than it's width, is
40 m. Find the width of the rectangle. *
O 10
O 12
08
O 16

Answers

Answered by drbalinipavani
1

Answer:

2(l + b) = 40 \\ 2(4 + b) = 40 \\ 4 + b = 20 \\ b = 20 - 4 \\ b = 16

Answered by Anonymous
61

\large\underline\bold{ANSWER \red{\huge{\checkmark}}}

\large\underline\bold{GIVEN,}

\dashrightarrow the\:perimeter\:of\:rectangular\:garden= 40m

\dashrightarrow length\:is\:4m\:more\:than\:that\:of\:its\:width\\ \therefore let\:x\:be\:width\: \\ \dashrightarrow length\:will\:be\:(x+4m)

\large\underline\bold{TO\:FIND}

\dashrightarrow Width\:of\:rectangle.

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: PERIMETER\:OF\: RECTANGLE= 2\times (l+b) \:\: \star}}}

\large\underline\bold{SOLUTION,}

\therefore solving\: using\:formula.we\:get, \\ \dashrightarrow 2\times (l+b)

\implies 2\times (x+(x+4))=40

\implies 2\times (2x+4)=40

\implies 4x+8=40

\implies 4x= 40-8

\implies 4x= 32

\implies x= \dfrac{32}{4}

\implies x= \cancel\dfrac{32}{4}

\implies x= 8

\large{\boxed{\bf{ \star\:\: width\:of\:rectangle\:is\:8m \checkmark\:\: \star}}}

\large\underline\bold{OPTION:-C,8m\:IS\:CORRECT\:OPTION \red{\checkmark}}

______________

Similar questions