Math, asked by anamikapatel45628, 19 days ago

The perimeter of a rectangular park is 200 m. If its breadth is 35 m, then find its length. Also, find the cost of growing grass at 12.50 per m square.​

Answers

Answered by Anonymous
11

Answer:

Given :

  • ➝ Perimeter of rectangular park == 200 m.
  • ➝ Breadth of rectangular park = 35 m.

\begin{gathered}\end{gathered}

To Find :

  • ➝ Length of rectangular park
  • ➝ The cost growing grass at 12.50 per m².

\begin{gathered}\end{gathered}

Using Formulas :

  • ➝ Perimeter of rectangle = 2(l + b)
  • ➝ Area of rectangle = l × b
  • ➝ Total cost = Area × Cost of growing grass per m².

\begin{gathered}\end{gathered}

Solution :

Finding the length of rectangular park by substituting the values in the formula :

\begin{gathered}  \quad\quad{\longrightarrow{\sf{Perimeter  = 2(l  +  b)}}}\\\\\qquad{\longrightarrow{\sf{200= 2(l  +  35)}}}\\\\\qquad{\longrightarrow{\sf{\dfrac{200}{2} =  (l  +  35)}}}\\\\\qquad{\longrightarrow{\sf{\cancel{\dfrac{200}{2}} =  (l  +  35)}}}\\\\\qquad{\longrightarrow{\sf{100=  (l  +  35)}}}\\\\\qquad{\longrightarrow{\sf{ l   = 100 - 35}}}\\\\ \qquad{\longrightarrow{\sf{ l   = 65 \: m}}}\\\\\qquad\bigstar \: \underline{\boxed{\sf{\pink{Length = 65 \: m}}}}\end{gathered}

Hence, the length of rectangular park is 65 m.

 \rule{300}{1.5}

Finding the area of rectangular park by substituting the values in the formula :

\begin{gathered}  \quad\qquad{\dashrightarrow{\sf{Area = l  \times  b }}} \\ \\ \quad\qquad{\dashrightarrow{\sf{Area = 65\times 35}}} \\  \\ \quad\qquad{\dashrightarrow{\sf{Area = 2275 \:  {m}^{2}}}} \\  \\  \quad\qquad\bigstar \: \underline{\boxed{\sf{\pink{Area = 2275 \:  {m}^{2}}}}}\end{gathered}

Hence, the area of rectangular park is 2275 m².

 \rule{300}{1.5}

Now, finding the total cost of growing grass at 12.50 per m².

\begin{gathered}{\implies{\sf{ Total  \: cost = Area  \times  Cost  \: of\:  grass  \: per \:   {m}^{2}}}}\\\\{\implies{\sf{ Total  \: cost = 2275 \times 12.50}}}\\\\{\implies{\sf{ Total  \: cost = 2275 \times  \dfrac{1250}{100}}}}\\\\{\implies{\sf{ Total  \: cost = 2275 \times  \dfrac{125\cancel{0}}{10 \cancel{0}}}}}\\\\{\implies{\sf{ Total  \: cost = 2275 \times \dfrac{125}{10}}}}\\\\{\implies{\sf{ Total  \: cost = \dfrac{2275 \times 125}{10}}}}\\\\{\implies{\sf{ Total  \: cost = \dfrac{284375}{10}}}}\\\\{\implies{\sf{ Total  \: cost = \cancel{\dfrac{284375}{10}}}}}\\\\{\implies{\sf{ Total  \: cost = Rs.28437.5}}}\\\\ \bigstar\underline{\boxed{\sf{\pink{ Total  \: cost = Rs.28437.5}}}}\end{gathered}

Hence, the cost of growing grass is Rs.28437.5.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered} \boxed{\begin{array}{l}\\ \large\dag\quad\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star \: \: \sf Circle = \pi r^2 \\ \\ \star \: \; \sf Square=(side)^2\\ \\ \star\; \; \sf Rectangle=Length\times Breadth \\\\ \star \: \: \sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \: \: \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \: \: \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star \: \: \sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star \: \: \sf Parallelogram =Breadth\times Height\\\\ \star \: \: \sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star \: \: \sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}

\rule{220pt}{3.5pt}

Similar questions
Math, 19 days ago