Math, asked by neha635, 11 months ago

the perimeter of a rectangular plot is 42 metres and its area is 108 CM square find the dimensions of the plot​

Answers

Answered by Anonymous
14

Answer:

\huge\fcolorbox{black}{pink}{Answer-}

l

Step-by-step explanation:

Given :

perimeter of the rectangle = 42 m

area of the rectangle = 108 cm^2

To find :

Dimensions of the rectangle .

Proof :

Let l and b the sides of the rectangle .

Therefore ,

According to the conditions ,

perimeter = 2 ( l+ b)

42 = 2 ( l + b )

21 = l + b

l = 21 - b ----(1)

area = l × b

108 = l × b ---(2)

substituting eq (1) in eq (2)

108 = (21 - b ) b

108 = 21 b - b^2

b^2 + 108 - 21b = 0

b^2 - 21b + 108 = 0

b^2 - 12b -9b + 108 =0

b ( b - 12 ) - 9(b - 12 ) = 0

( b - 12 ) ( b - 9 ) =0

Therefore ,

b = 12 and b = 9

Case 1

b = 12

substituting b = 12 in eq (1 )

l = 21 - 12

l = 9

Case 2

b = 9

substituting b = 9

l = 21 -9

l = 12

Answered by TrickYwriTer
2

Step-by-step explanation:

 \huge \mathcal{Answer - }

 \bold{Given -} \\  \\    \bold{Perimeter \: of \: rectangular \: plot = 42 \: m} \\  \bold{Area \: of \: rectangular \: plot  = 108  \: {m}^{2} } \\  \\ Now, \\ According \: to \: question \\  \\ \bold{ 2(l + b) = 42} \\ l + b = 21 \\  \\ \bold{ l \times b = 108} \\  \\  \fbox\bold{ b =   \frac{108}{l} } \\  \\ Substituting \:   \bold{b =   \frac{108}{l} } \: on \:  \bold{l + b = 21} \\  \\ l +  \frac{108}{l}  =21 \\  \\  \frac{ {l}^{2}  + 108}{l}  = 21 \\  \\  {l}^{2}  + 108 = 21l \\  \\  \bold{l {}^{2}  - 21l + 108} \\  \\ Now \: factorising \: this, \\  \\ l {}^{2}  - 9l - 12l + 108 \\  l(l - 9) - 12(l - 9) \\ (l - 12)(l - 9) \\  \\ l - 12 = 0  \:  \:  \:  \:  \: and \:  \: l - 9 = 0 \\  \\   \fbox\bold{l = 12 \:  \:  \: and \:  \:  \: l = 9} \\  \\ Substituting \: the \: value \: of \:  \bold{l = 9} \: on  \:  \bold{l + b = 21} \\  \\  \bold{9} + b = 21 \\  b = 21 - 9 \\  \\   \fbox\bold{b = 12} \\  \\  \\ Hence, \\   \fbox \bold{Length = 9 \: m} \\  \bold{and} \\   \fbox\bold{Breadth = 12 \: m}

Similar questions