Math, asked by AyushYaduvanshi13, 3 months ago

The perimeter of a rectangular swimming pool is 154 m. its length is 2m more than twice its breadth. What are the length and the breadth of the pool? Find

Answers

Answered by Anonymous
29

Answer:

Given :-

  • The perimeter of a rectangular swimming pool is 154 m. It's length is 2 m more than twice of its breadth.

To Find :-

  • What is the length and breadth of rectangular swimming pool.

Formula Used :-

\sf\boxed{\bold{\pink{Perimeter\: of\: Rectangle =\: 2(Length + Breadth)}}}

Solution :-

Let, the breadth be x m

And, the length will be 2x + 2

According to the question by using the formula we get,

\sf 2(2x + 2 + x) =\: 154

\sf 4x + 4 + 2x =\: 154

\sf 6x =\: 154 - 4

\sf 6x =\: 150

\sf x =\: \dfrac{\cancel{150}}{\cancel{6}}

\sf\bold{\green{x =\: 25\: m}}

Hence, the length and breadth are :

Length of swimming pool :

\sf 2x + 2\: m

\sf 2 \times 25 + 2\: m

\sf 50 + 2\: m

\sf\bold{\red{52\: m}}

And,

Breadth of swimming pool :

\sf x\: m

\sf\bold{\red{25\: m}}

\therefore The length and breadth of a rectangular swimming pool is 52 m and 25 m respectively.

Answered by BrainlyRish
8

❍ Let's Consider breadth of Rectangular swimming pool be .

Given that ,

⠀⠀⠀⠀⠀It's length is 2m more than twice its breadth .

Then ,

  • Length of Rectangular swimming pool is 2 + 2x .

\underline {\frak{\dag As \:We \:know \:that \: : }}\\

\qquad \qquad \qquad \underline {\boxed {\sf{ \bigstar Perimeter _{(Rectangle)} = 2 (l + b) \:units}}}\\\\

Where ,

  • l is the Length of Rectangle in m and b is the Breadth of Rectangle in m and We have given with the Perimeter of Rectangle is 154 m .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( x + 2 + 2x )}\\

\qquad \qquad:\implies \sf{ \dfrac{\cancel {154}}{\cancel {2}} = x + 2 + 2x }\\

\qquad \qquad:\implies \sf{ 77 = x + 2 + 2x }\\

\qquad \qquad:\implies \sf{ 77 = 2 + 3x }\\

\qquad \qquad:\implies \sf{ 77 - 2 = 3x }\\

\qquad \qquad:\implies \sf{ 75 = 3x }\\

\qquad \qquad:\implies \sf{ \dfrac{\cancel {75}}{\cancel {3}} = x }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 25\: m}}}}\:\bf{\bigstar}\\

Therefore,

  • Length of Rectangle is 2 + 2x = 2 + 2 × 25 = 50 + 2 = 52 m .

  • Breadth of Rectangle is x = 25 m .

Therefore,

⠀⠀⠀⠀⠀\therefore{\underline{\mathrm {  Length \:and\:Breadth \:of\:Rectangular \:swimming \:pool\:is\:\bf{52m\:and\:25 m\:}\: \: ,respectively. }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star Verification \::}}}\mid}}}\\\\

\underline {\frak{\dag As \:We \:know \:that \: : }}\\

\qquad \qquad \qquad \underline {\boxed {\sf{ \bigstar Perimeter _{(Rectangle)} = 2 (l + b) \:units}}}\\\\

Where ,

  • l is the Length of Rectangle in m and b is the Breadth of Rectangle in m and We have given with the Perimeter of Rectangle is 154 m .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( 25 + 52 )}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( 77 )}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  154m = 154\: m}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \bf{\underline {Hence,\:Verified \;}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 52\: m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 25\: m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Note : Kindly view this Answer in web :)

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions