Math, asked by Eutopia45, 2 months ago

The perimeter of a rectangular swimming pool is 154 m. Its length is 2 m more than twice its breadth. What are the length and the breadth of the pool?​

Answers

Answered by Anonymous
55

Given : Perimeter of rectangular swimming pool = 154 cm.

To Find : Length and breadth of the pool.

⠀⠀__________________________

☯Let the breadth of rectangle be x.

{\underline{\boldsymbol{\pink{According~ to~ the~ question~ :}}}}

Length of the rectangle = 2x + 2

We know that,

Perimeter = 2(Length + breadth)

:\implies\sf{2(2x+2+x)=154 \ m}

\\

:\implies\sf{2(3x+2)=154}

\\

:\implies\sf{3x+2=154/2}

\\

:\implies\sf{3x=77-2}

\\

:\implies\sf{3x=75}

\\

:\implies\sf{x=75/3}

\\

:\implies{\boxed{\frak{\purple{x=25m}}}}

\\

Therefore,Breadth = x = 25 cm

\\

Length = 2x + 2

:\implies\sf{(2×25)+2}

\\

:\implies\sf{50+2}

\\

:\implies{\boxed{\frak{\purple{52m}}}}

\\ \\

\begin{lgathered}\boxed{\begin{array}{c} { \ \boxed{ \frak \color{skyblue} \star \: Some \: Related \: Formulae \: \star}} \\\\ { \sf Area \: of \: square \: = \: side \: \times \: side} \\ { \sf Area \: of \: rectangle \: = length \: \times \: breadth }\\ {\sf Area \  of \ parallelogram = b \ h} \\ {\sf Area \ of \ triangle = \dfrac{h_b b}{2}} \\ {\sf Area \ of \ trapezoid = \dfrac{a+b}{2}h} \\ {\sf Area \ of \ rhombus= \dfrac{p \ q}{2}} \\{ \sf \:Perimeter \: of \: square \: = \: sum \: of \: all \: sides} \\{ \sf Perimeter \: of \: rectangle \: = \:( \: 2 \times l + b \: )} \\ {\sf \: Perimeter \: of \: parallelogram =2(a + b)} \\ { \sf \:Perimeter \: of \: triangle = a + b + c}\:  \\ { \sf  \: Perimeter \: of \: trapezoid =a + b + c + d} \\ { \sf{Perimeter \: of \: diagonal \:of \: a \: rectangle =  \sqrt{l^{2}+b^{2}}}} \\ { \sf{Perimeter \: of \: rhombus = 4a}} \end{array}}\end{lgathered}

Answered by yashikasukhija9559
2

Answer: The answer is :

Breadth=25m  and  Lenght= 25×2+2=52 m

STEP BY STEP EXPLANATION = The answer is given above ...

Similar questions