Math, asked by sksourav70, 3 months ago

the perimeter of a rhombus is 26 cm and one of its diagonal is 66 cm find the area of the rhombus and its other diagonal. ​

Answers

Answered by NewGeneEinstein
5

Step-by-step explanation:

Given:-

Perimeter of a Rhombus =26cm

Length of its one diagonal =66cm

To find:-

  • Area of Rhombus
  • Length of other diagonal

Solution:-

Let the side = a

As we know that in a Rhombus

\boxed {\sf Perimeter =4a}

  • Substitute the values

\\\qquad\quad\sf {:}\hookrightarrow 4a=26

\\\qquad\quad\sf {:}\hookrightarrow a=\dfrac {26}{4}

\\\qquad\quad\sf {:}\hookrightarrow a=6.5cm

  • Side =6.5cm

\rule {200}{2}

Let the other diagonal be x

We know that in a Rhombus

\boxed {\purple {\sf Side=\dfrac {1}{2}\sqrt{(d_1)^2+(d_2)^2}}}

  • Substitute the values

\\\qquad\quad\sf {:}\hookrightarrow 6.5=\dfrac {1}{2}\sqrt{(66)^2+(x)^2}

\\\qquad\quad\sf {:}\hookrightarrow 6.5=\dfrac {1}{2}\sqrt {4356+x^2}

\\\qquad\quad\sf {:}\hookrightarrow \sqrt {4356+x^2}=6.5\times 2

\\\qquad\quad\sf {:}\hookrightarrow \sqrt {4356+x^2}=13

\\\qquad\quad\sf {:}\hookrightarrow x^2+4356=(13)^2

\\\qquad\quad\sf {:}\hookrightarrow x^2+4356=169

\\\qquad\quad\sf {:}\hookrightarrow x^2=4356-169

\\\qquad\quad\sf {:}\hookrightarrow x^2=4187

\\\qquad\quad\sf {:}\hookrightarrow x=\sqrt {4187}

\\\qquad\quad\sf {:}\hookrightarrow x=64.7cm

  • Length of Other diagonal=64.7cm

\rule {200}{2}

As we know that in a Rhombus

\boxed{\pink {\sf Area=\dfrac {1}{2}\times d_1{}^2\times d_2 {}^2}}

  • Substitute the values

\\\qquad\quad\sf {:}\hookrightarrow Area=\dfrac {1}{2}\times (66)^2\times (64.7)^2

\\\qquad\quad\sf {:}\hookrightarrow Area=\dfrac {1}{2}\times 4356\times 4187

\\\qquad\quad\sf {:}\hookrightarrow Area=\dfrac {4356×4187}{2}

\\\qquad\quad\sf {:}\hookrightarrow Area=9119cm^2

Similar questions