Math, asked by singhnathawat6, 11 months ago

The perimeter of a rhombus is 260 cm and height is 10 cm. If one diagonal is 0.25, find the length of other diagonal in meters​

Answers

Answered by Anonymous
12

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

\huge \starFor the Rhombus:

\impliesperimeter(p)= 260 cm

Now we know for a rhombus

\implies \bf \boxed{\red{perimeter (p)=4\times side}}

\implies \bf base=\frac{perimeter}{4} \\ \implies \bf base=\frac{\cancel{260}}{4}\\ \implies \bf base=65 \:cm

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge \starGiven:

\impliesbase(b)=10 cm

\impliesheight(h)=10 cm

\implies diagonal(d_1)=0.25cm=25 cm

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \bf\star \:Rhombus \;with\: diagonal \:\blue{\bf d_1}\: and\: \blue{d_2}\:

\implies\boxed{ \red{Area=d_1\times d_2}}

\bf\star \:Rhombus \;with\: base\blue{\bf \:b}\: and \:height\:\blue{\bf h\:}

\implies\boxed{ \red{Area=b\times h}}

\therefore \bf Area=d_1\times d_2=b\times h\\ \implies  \bf d_2={b\times h}{d_1}\\ now,\: putting \:the \:values\\ \implies  \bf d_2={65\times 10}{25}\\ \implies \boxed{\red{ d_2=26 cm}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions