Math, asked by dilip450, 1 year ago

The perimeter of a rhombus is 40 cm and the length of one of its diagonals is 16 cm.Find its area.​

Answers

Answered by Rythm14
10

First we have to find length of side of rhombus ----

perimeter of rhombus = 4 x sides

40 = 4 x sides

10 cm = side of rhombus

by using Pythagoras theorem -----

(10)-^2 = (8)^2 + (x)^

6 cm = x

12 cm is length of other diagonal.

Now area of rhombus = 1/2 x product of diagonals

= 1/2 x 16 x 12

= 96 sq.cm

Answered by BoyBrainly
15

 \fbox{ \fbox{ \large{ \bold{Given :- \: }}}}

 \implies \:  \bold{Perimeter = 40 \:  cm  \: }

 \implies \:  \bold{ Length  \: Of  \: One  \: Diagonal  \: = 16 \:  cm  \: }

 \fbox{ \fbox{ \large{ \bold{Solution :- \: }}}}

 \implies \:  \bold{Perimeter = 4 × Side} \\ </p><p> \implies \:  \bold{40 = 4 × Side } \\  </p><p> \implies \:   \bold{Side =  \frac{40}{4} } \\  </p><p> \implies \:  \bold{Side = 10 \:  cm  }

 \bold{By \:  Pythagoras \:  Theorem  \: , \: } \\   \\  \implies \: \bold{ {h}^{2}  = {b}^{2}  +  \:  {p}^{2} \: } \\   \implies \:  \bold{ {10}^{2}  =  {8}^{2}  +  {x}^{2}   \: } \\   \implies \:  \bold{ {x}^{2}  = 36} \\   \implies \:  \bold{x =  6 }

Hence , The Length Of Other Diagonal Is 12 cm

 \bold{ \underline{We \:  Know  \: That \:  , \: }}

 \fbox{ \fbox{ \bold{ \huge{Area  \: Of  \: Rhombus =  { \frac{Product  \: Of  \: Diagonals  \: }{2}  }}}}}

 \implies \:  \bold{Area \:  Of \:  Rhombus =  \frac{12   \: ×   \: 16 }{2}  \: } \\   \\  \implies \:  \bold{Area \:  Of \:  Rhombus = 96 \: \:  {cm}^{2} }

Similar questions