Math, asked by spondita24, 6 months ago


The perimeter of a rhombus is 4m. One of its diagonal is 4/3rd of the other.
Find the area of the rhombus.
1) 84m2
2) 108m² 3) 144m²
4) 96m​

Answers

Answered by ItzDeadDeal
4

Answer:

Step-by-step explanation:

³/₂

Formula Used

\begin{gathered}\rm cos2\theta+1=2cos^2\theta\\\\\bullet \;\; \rm cos^2\theta=\dfrac{cos2\theta+1}{2}\\\\\bullet \;\; \rm cosA+cosB=\tiny{2cos(\dfrac{A+B}{2}).cos(\dfrac{A-B}{2})}\\\\\bullet \;\; \rm cos(\pi-\theta)=-sin\theta\end{gathered} </p><p>

Solution

LHS

\begin{gathered}\rm \to cos^2x+cos^2(x+\dfrac{\pi}{3})+cos^2(x-\dfrac{\pi}{3})\\\\\end{gathered} </p><p></p><p>

\begin{gathered}\rm \to \dfrac{cos2x+1}{2}+\dfrac{\tiny{cos2(x+\dfrac{\pi}{3})+1}}{2}+\dfrac{\tiny{cos2(x-\dfrac{\pi}{3})+1}}{2}\\\\\to \rm \dfrac{1}{2}\tiny{( 3+cos2x+cos(2x+\dfrac{2\pi}{3})+cos(2x-\dfrac{2\pi}{3}))}\\\\\to \rm \dfrac{1}{2} \tiny{(3+cos2x+2cos(\dfrac{2x+\dfrac{2\pi}{3}+2x-\dfrac{2\pi}{3}}{2}).cos(\dfrac{2x+\dfrac{2\pi}{3}-2x+\dfrac{2\pi}{3}}{2}))}\\\\\end{gathered} </p><p>

\begin{gathered}\rm \to \dfrac{1}{2}(3+cos2x+2cos2x.(-sin30^0))\\\\\rm \to \dfrac{1}{2}(3+cos2x+2cos2x.\dfrac{-1}{2})\\\\\rm \to \dfrac{1}{2}(3+cos2x-cos2x)\\\\\rm \to \dfrac{3}{2}\\\\\rm \to RHS\end{gathered} </p><p>

Formula Used

\begin{gathered}\rm cos2\theta+1=2cos^2\theta\\\\\bullet \;\; \rm cos^2\theta=\dfrac{cos2\theta+1}{2}\\\\\bullet \;\; \rm cosA+cosB=\tiny{2cos(\dfrac{A+B}{2}).cos(\dfrac{A-B}{2})}\\\\\bullet \;\; \rm cos(\pi-\theta)=-sin\theta\end{gathered} </p><p>

Solution

LHS

\begin{gathered}\rm \to cos^2x+cos^2(x+\dfrac{\pi}{3})+cos^2(x-\dfrac{\pi}{3})\\\\\end{gathered} </p><p>

Answered by jyotigupta64
6

Step-by-step explanation:

Formula Used

\begin{gathered}\begin{gathered}\rm cos2\theta+1=2cos^2\theta\\\\\bullet \;\; \rm cos^2\theta=\dfrac{cos2\theta+1}{2}\\\\\bullet \;\; \rm cosA+cosB=\tiny{2cos(\dfrac{A+B}{2}).cos(\dfrac{A-B}{2})}\\\\\bullet \;\; \rm cos(\pi-\theta)=-sin\theta\end{gathered}\end{gathered}

cos2θ+1=2cos

2

θ

∙cos

2

θ=

2

cos2θ+1

∙cosA+cosB=2cos(

2

A+B

).cos(

2

A−B

)

∙cos(π−θ)=−sinθ

Solution

LHS

\begin{gathered}\begin{gathered}\rm \to cos^2x+cos^2(x+\dfrac{\pi}{3})+cos^2(x-\dfrac{\pi}{3})\\\\\end{gathered}\end{gathered}

→cos

2

x+cos

2

(x+

3

π

)+cos

2

(x−

3

π

)

\begin{gathered}\begin{gathered}\rm \to \dfrac{cos2x+1}{2}+\dfrac{\tiny{cos2(x+\dfrac{\pi}{3})+1}}{2}+\dfrac{\tiny{cos2(x-\dfrac{\pi}{3})+1}}{2}\\\\\to \rm \dfrac{1}{2}\tiny{( 3+cos2x+cos(2x+\dfrac{2\pi}{3})+cos(2x-\dfrac{2\pi}{3}))}\\\\\to \rm \dfrac{1}{2} \tiny{(3+cos2x+2cos(\dfrac{2x+\dfrac{2\pi}{3}+2x-\dfrac{2\pi}{3}}{2}).cos(\dfrac{2x+\dfrac{2\pi}{3}-2x+\dfrac{2\pi}{3}}{2}))}\\\\\end{gathered}\end{gathered}

2

cos2x+1

+

2

cos2(x+

3

π

)+1

+

2

cos2(x−

3

π

)+1

2

1

(3+cos2x+cos(2x+

3

)+cos(2x−

3

Similar questions