Math, asked by harshita17096, 4 months ago

The perimeter of a rhombus is 60 cm. If the length of longer diagonal is 24 cm,

find the length of shorter diagonal.​

Answers

Answered by Anonymous
30

Given :- ABCD is a rhombus with perimeter 60cm and length of its longer diagonal 24cm.

We need to find the length of shorter diagonal.

Solution :- As we know that, all four sides of a rhombus are equal.

•°• AB = BC = CD = DA

Now, perimeter of rhombus can be written as

☆ 4 × side

→ Perimeter = 60

→ 4 × side = 60

→ side = 60/4

side = 15cm

Therefore, all the sides of the rhombus is 15cm long.

Since, diagonals of a rhombus are perpendicular bisector of each other.

•°• BD divides AC in two equal parts.

  • CO = 24/2 = 12cm

In right BOC

[By Pythagoras theorem]

★ BC² = BO² + CO²

→ BO² = BC² - CO²

→ BO² = (15)² - (12)²

→ BO² = 225 - 144

→ BO² = 81

→ BO = √81

BO = 9 cm

Since, AC also bisect BD, so we write that

→ BD = 2BO

→ BD = 2 × 9

BD = 18cm

Hence,

  • BD is the smaller diagonal with length of 18cm.
Attachments:
Answered by Sen0rita
73

\bold{Given}\begin{cases} \tt\: perimeter \: of \: a \: rhombus \: is  =  \bold{60cm} \\  \\ \tt \: length \: of \: the \: longer \: diagonal \:  = \bold{24cm} \end{cases}

We've to find the length of the shorter diagonal.

_________________________

As we know that :

\underline{\boxed{\tt\purple{\bigstar \: perimeter \: of \: a \: rhombus \:  = 4 \times side}}}

Put the values -

\tt:\implies \: perimeter \: of \: the \: rhombus \:  = 4 \times side \\  \\  \\ \tt:\implies \: 60 = 4 \times side \\  \\  \\ \tt:\implies \: side = \cancel \frac{60}{4}  \\  \\  \\ \tt:\implies \: side \:  = \underline{\boxed{\sf\purple{15cm}}}\bigstar

In BEC

 \tt:\implies \: BE² + EC² = BC²  \: (diagonals \: of \: a \: rhombus \: bisect \: at \: right \: angles)

Put the values -

\tt:\implies \: BE {}^{2}  + EC {}^{2}  = BC {}^{2}  \\  \\  \\ \tt:\implies \: (12) {}^{2}  + EC {}^{2} =  {(15)}^{2}  \\  \\  \\ \tt:\implies \: 144  +  EC {}^{2} \:  = 225 \\  \\  \\ \tt:\implies \: EC {}^{2} \:  = 22 5 - 144 \\  \\  \\ \tt:\implies \: EC {}^{2} \:  = 81 \\  \\  \\ \tt:\implies \: EC \:  =  \sqrt{81}  \\  \\  \\ \tt:\implies \: EC = \underline{\boxed{\tt\purple{9cm}}}\bigstar

AC is the shorter diagonal diagonal. So,

\tt:\implies \: AE + EC = AC  \:  \\  \\  \\ \tt:\implies \:  EC + EC = AC \: (diagonals \: bisect \: each \: other \: ) \\  \\  \\ \tt:\implies \: AC = 9 + 9 \\  \\  \\ \tt:\implies \: AC = \underline{\boxed{\sf\purple{18cm}}}\bigstar \\  \\  \\  \sf\therefore{\underline{Hence, \: the \: shorter \: diagonal \: is \: \bold{18cm}.}}

Attachments:
Similar questions