Math, asked by diya9041maharjan, 6 months ago

the perimeter of a right angle triangle is 24 and its area is 24 cm square find the sides of the triangle​

Answers

Answered by HarshAditya098
1

Answer:

Step-by-step explanation:

a2+b2=c2  

c=p−a−b  

c2=p2+a2+b2+2(ab−ap−bp)  

2p(a+b)−p2=2ab=4q  

2p(a+b)=p2+4q  

EDIT: [simpler]

2p(p−c)=p2+4q  

2p2−2pc=p2+4q  

−2pc=−p2+4q  

c=p/2−2q/p  

Now we plug in  p=q=24  and get  c=12−2=10  

We know  a+b=p−c=14  and  ab=2q=48  so  a  and  b  satisfy

x2−14x+48=0  

x=7±49−48−−−−−−√=7±1  

The problem is symmetrical in sides  a  and  b  so we can just call  a  the  +  root and  b  the  −  root.

a=8  

b=6  

Check:  p=6+8+10=24q=12(6)(8)=24✓  

ORIGINAL ANSWER:

2p(a+b)=p2+4q  

a+b=p/2+2q/p  

b=p/2+2q/p−a  

ab=2q  

a(p/2+2q/p−a)=2q  

p2a+4qa−2pa2=4pq  

2pa2−(p2+4q)a+4pq=0  

a=14p((p2+4q)±(p2+4q)2−32p2q−−−−−−−−−−−−−−−√)  

The problem is symmetrical in sides  a  and  b  so we can just call  a  the  +  root and  b  the  −  root.

Plugging in the numbers, we have  p=q=24.  Let’s set  p=q  first.

(p2+4p)2−32p3=(p(p+4))2−32p3=p2[(p+4)2−32p]=p2[p2−24p+16]=242⋅42  

a=14(24)(24(28)+24(4))=7+1=8  

b=7−1=6  

c2=62+82=100  

c=10  

Check:  p=6+8+10=24q=12(6)(8)=24✓

Similar questions