Math, asked by prinshi77, 4 months ago

the perimeter of a right angled triangle is 144 cm and its hypotenuse is 65 cm find the length of other sides and calculates its area .​


prashantmakholiya: very knowledge full answer really thanks

Answers

Answered by genesistb213
1

Answer:

length of othersides 63 and 16 cm

area is 604 cm

Step-by-step explanation:

 The perimeter of right angled triangle is 144 cm.

 hypotenuous is 65 cm .

 let the two sides are x and y .

 x^2 + y^2 = 652        

perimeter of right angled triangle is 144 cm.

And   x + y + 65 = 144

         x + y   =  144 - 65 = 79

squaring both sides, we get

            ( x + y )^2 = 792

=>      x^2 + y^2 + 2 x y = 6241

           4225 + 2 x y = 6241

           2 x y  = 6241 - 4225

                     = 2016

              x y  =   2016 / 2

                     =   1008

              y     =    1008 /  x

substituting

   y     =    1008 / x    in

   

   x  + y  = 79  , we get

   

    x  +  1008 / x   =  79

   x^2  +   1008   =  79 x

    x2  -  79 x  +1008  =  0

   x2   - 63 x - 16 x  + 1008  = 0

   x ( x - 63 )  -  16 ( x - 63 )  =0

       ( x - 63 ) ( x - 16 ) =  0   

so, x = 63 cm  or  x  =  16 cm

the length of other sides are 63 cm , 16 cm.

Area of  right  angled tringle is  

                1 / 2  x  63 x 16 = 504 cm2

 Verify the result using Heron's Formula

            S = ( 16 + 63 + 65 ) / 2  = 72

   A = ( s x ( s-a ) x (  s - b ) x ( s - c ) )1/2

       = ( 72 x (72 - 16 ) x ( 72 - 63 ) x ( 72 - 65 )  )1/2

      =   ( 72 x 56 x 9 x 7 ) 1/2

     =   ( 9 x 8 x 8 x 7 x 9 x 7 )1/2                

     =   9 x 8 x 7 = 504 cm^2

Similar questions