the perimeter of a right angled triangle is40 cm if It's hypotenuse is 17 cm find area
Answers
Given,
⟹ a + b + c = 40cm
⟹ b = 17cm
Solution:
⇒ a + 17 + c = 40
⇒ a + c = 23 --(i)
⇒ b² = a² + c²
(Pythagoras theorem)
⇒ (17)² = a² + c²
⇒ a² + c² = 289 --(ii)
⇒ (a + c)² = a² + c² + 2ac
⇒ (23)² = 289 + 2ac
⇒ ac = 120 --(iii)
∴ Area = 1/2 × base × height
= 1/2 × a × c
= 1/2 × 120
= 60 cm²
GIVEN :-
Perimeter of right angled ∆ = 40 cm.
Hypotenuse of right angled ∆ = 17 cm.
TO FIND :-
The area of the right angled ∆.
SOLUTION :-
Let, the Perpendicular of ∆ be "x" and the base of the triangle be "y".
Now , as we know that,
⇒ Perimeter of ∆ = sum of all sides.
⇒ Hypotenuse + x + y = 40 cm.
⇒ 17 cm + x + y = 40 cm
⇒ x + y = 40 cm - 17 cm.
⇒ x + y = 23
⇒ x = 23 - y. ....(1)
Now by using the Pythagoras theorem we have,
⇒ (Hypotenuse)² = (x)² + (y)²
⇒ (17)² = (23 - y)² + (y)²
⇒ 289 = (23)² + (y)² - 2 × 23 × y + (y)²
⇒ 289 = 529 + y² - 46y + y²
⇒ 289 = 529 + y² + y² - 46y
⇒ 289 - 529 = y² + y² - 46y
⇒ -240 = y² + y² - 46y
⇒ -240 = 2y² - 46y
⇒ 2y² - 46y + 240 = 0
⇒ 2(y² - 23y + 120) = 0
⇒ y² - 23y + 120 = 0/2
⇒ y² - 23y + 120 = 0
By splitting the middle term process,
⇒ y² - 15y - 8y + 120 = 0
⇒ y(y - 15) - 8(y - 15)
⇒ (y - 15) (y - 8) = 0
⇒ y - 15 = 0 , y - 8 = 0
⇒ y = 15 , y = 8
Now substitute the value of y in equation 1.
⇒ x = 23 - y [ ∵ y = 15 , y = 8 ]
⇒ x = 23 - 15. [ ∵ y = 15 ]
⇒ x = 8
Similarly,
⇒ x = 23 - y
⇒ x = 23 - 8. [ ∵ y = 8 ]
⇒ x = 15
Now as we know that,
⇒ Area of triangle = 1/2 × base × Height
⇒ Area of triangle = 1/2 × 15 × 8
⇒ Area of triangle = 15 × 4
⇒ Area of triangle = 60 cm².
On taking the other values,
⇒ Area of triangle = 1/2 × base × Height
⇒ Area of triangle = 1/2 × 8 × 15
⇒ Area of triangle = 4 × 15
⇒ Area of triangle = 60 cm².
⇒ Area of triangle = 60 cm.Hence the area of the triangle is 60 cm².