The perimeter of a right angled triangle is60 cm and its hypotenuse is 25cm then find the remaining twosides
Answers
Answer :-
Other two sides are 20 cm and 15 cm.
Explanation :-
Hypotenuse of the right triangle (Hyp) = 25 cm
Let the height of the triangle be 'h' cm
Let the base of the triangle be 'b' cm
Given
Perimeter of the right triangle = 60 cm
⇒ Sum of all sides = 60
⇒ Hyp + b + h = 60
⇒ 25 + b + h = 60
⇒ b + h = 60 - 25
⇒ b + h = 35
⇒ b = 35 - h
In a Right triangle
b² + h² = Hyp²
⇒ (35 - h)² + h² = 25²
[ ∵ b = 35 - h ]
⇒ 35² + h² - 2(35)(h) + h² = 625
[ ∵ (x - y)² = x² - 2xy + y²]
⇒ 1225 + h² - 70h + h² = 625
⇒ 2h² - 70h + 1225 - 625 = 0
⇒ 2h² - 70h + 600 = 0
⇒ 2(h² - 35h + 300) = 0
⇒ h² + 35h + 300 = 0/2
⇒ h² - 35h + 300 = 0
Splitting the middle term
⇒ h² - 20h - 15h + 300 = 0
⇒ h(h - 20) - 15(h - 20)
⇒ (h - 20)(h - 15) = 0
⇒ h - 20 = 0 or h - 15 = 0
⇒ h = 20 or h = 15
i) If h = 20 cm
b = 35 - h = 35 - 20 = 15 cm
ii) If h = 15
b = 35 - h = 35 - 15 = 20 cm
∴ the other two sides are 20 cm and 15 cm.
The other two sides of the triangle are 15 cm and 20 cm.
Perimeter of the right angled triangle = 60 cm
Its Hypotenuse = 25 cm
Measure of remaining two sides
- Base be x
- Height be y
Perimeter of the triangle = Sum of all sides
★
★
The other two sides of the triangle are 15 cm and 20 cm.