The perimeter of a right triangle is 30 cm. If its hypotenuse is 13 cm, then what are two sides? (3)
Answers
Right angled triangle
Solve for leg
a=12cm
or
5cm
Using the formulas
P=a+b+a2+b2
c=a2+b2
There are 2 solutions fora
a=1
22P﹣P2+2Pc+c2+2c2﹣2c﹣P2+2Pc+c2=1
2·2·30·﹣302+2·30·13+132+2·132﹣2·13·﹣302+2·30·13+132=12cm
a=1
22c2﹣2P﹣P2+2Pc+c2+2c﹣P2+2Pc+c2=1
2·2·132﹣2·30·﹣302+2·30·13+132+2·13·﹣302+2·30·13+132
=5cm
Solution :-
The perimeter of a right angled triangle is 30cm
The hypotenuse is 13cm
Let the sides of triangle a , b and c
We know that,
Perimeter of triangle = S + S + S
Put the required values,
30 = a + b + c
30 = a + b + 13
a + b = 30 - 13
a + b = 17
a = 17 - b. ( 1 )
Now,
By using Pythagoras theorem,
c^2 = a^2 + b^2
Subsitute all the values,
( 13)^2 = ( 17 - b)^2 + b^2
[ From ( 1 ) a = 17 - b ]
169 = 289 + b^2 - 34b + b^2
[ Using identity ( a - b)^2 = a^2+b^2-2ab]
169 - 289 = 2b^2 - 34b
-120 = 2b^2 - 34b
2b^2 - 34b + 120 = 0
2 ( b^2 - 17b + 60 ) = 0
b^2 - 17b + 60 = 0
By factorization method,
b^2 - 12b - 5b + 60 = 0
b( b - 12) - 5 ( b - 12) = 0
( b - 5 ) ( b - 12 ) = 0
Here,
b = 5 and b = 12
So,
If the value of b = 5 then a = 17 - 5 = 12
If the Value of b = 12 then a = 17 - 12 = 5