Math, asked by mohitvbafna, 10 months ago

The perimeter of a right triangle is 56 cm. If its hypotenuse is 25 cm. Find
other two sides. Find its area by using the formula for a right triangle
your answer by using Heron's formula.​

Answers

Answered by mddilshad11ab
91

\huge\bold\red{\underline{Solution:}}

\bold\green{\underline{Given:}}

  • The perimeter of Triangle=56cm
  • The hypotenous=25cm

\bold\green{\underline{Let:}}

  • The two sides be X and Y

\bold\orange{\underline{A.T.Q}}

  • by using formula formula here

Sum of sides of Triangle=perimeter of Triangle

X+Y+25=56

⟹X+Y=56-25

⟹X+Y=31

⟹X=31-Y

\bold\purple{\boxed{X+Y=31-----(1)}}

Than, using pathagoras theorem

P²+b²=h²

⟹X²+Y²=25²

⟹X²+Y²=625

\bold\purple{\boxed{X^2+Y^2=625----(2)}}

  • Solving the EQ by substituting method

Putting the value X=31-Y in EQ 2

(31-Y)²+Y²=625

⟹961-62Y+Y²+Y²=625

⟹2Y²-62Y+961-625=0

⟹2Y²-62Y+336=0

  • Dividing by 2 on both sides

⟹Y²-31Y+168=0

⟹Y²-24Y-7Y+168=0

⟹Y(Y-24)-7(Y-24)=0

SO, Y=24 and 7

  • Putting the value of y=24 in Eq 1

⟹X+Y=31

⟹X+24=31

⟹X=7

Now, finding semi perimeter

\bold\purple{\boxed{Semi\: perimeter=\frac{a+b+c}{2}}}

Here, a=7 b=24 c=25

⟹Semi perimeter=7+24+25/2

⟹Semi perimeter=56/2

⟹Semi perimeter=28

As we know that,

Area of Triangle =1/2×base×height

Here, base=7cm height=24cm

Area=1/2×7×24

Area=12×7

Area=84cm²

Applying , heron's formula here to find the area of Triangle

Area=√s(s-a)(s-b)(s-c)

⟹Area=√28(28-7)(28-24)(28-25)

⟹Area=√28x21x4x3

⟹Area=√7x2x2x7x3x2x2x3

⟹Area=7x2x2x3

⟹Aea=84 cm²

Hence,

The area of Triangle is 84cm²

\large{\underline{\red{\rm{AnswEr:}}}}

The two sides of Triangle=7cm and 24cm

The area of Triangle=84cm²

Answered by skacwa
10

Answer:

hope this helps you

Attachments:
Similar questions