The perimeter of a right triangle is 60 cm .If hypotenou is 25 .find area of triangle .
Answers
Answered by
5
Answer:
perimeter of right triangle = 60
hypotenuos = 25
LET , X = HEIGHT , Y = BASE , Z = HYPOTENUOS
GIVEN , X+Y+Z = 60 AND Z = 25
SO, X+Y = 60-25
==> X+Y = 35
SO, X = 35-Y ...(1)
BY PYTHAGORAS THOEREM
(H)² = (P)²+(B)²
==> (25)² = (X)²+(Y)²
PUTTING VALUE OF X
==> 625 = (35-Y)²+Y²
==> 625 = 1225+Y²-70Y+Y²
==> 2Y²-70Y + 1225-625 = 0
==> 2Y² - 70Y+ 600 = 0
==> 2(Y²-35Y+300) = 0
==> Y²-35Y+300 = 0/2
==> Y²-15Y-20Y+300 = 0
==> Y(Y-15)- 20 (Y-15) = 0
==> SO, Y = 15 , 20
SO, SIDES ARE 15 AND 20
AREA OF TRIANGLE ==> 1/2×BASE×HEIGHT
==> 1/2×15×20
==> 150 CM²
gulshankumar69:
Thanks
Answered by
2
✨here is your answer ✨
perimeter = 60
let the length of perpendicular = x
so , base = 60-(25+x)
= 35-x
✨ by Pythagoras theram
25² = x² + (35-x)²
625 = 2x² + 1225 - 70x
2x² -70x +600= 0
2x² - 40x -30x + 600 =0
2x(x-20) -30(x-20) =0
so,,
x = 15or 20
if x= 15 = p
b = 20
so, area of triangle = 1/2 b×h
= 150cm²
OR
IF x = 20 , so b = 15 , p= 20
so, area = 150cm²
✨ HOPE IT HELP U✨
perimeter = 60
let the length of perpendicular = x
so , base = 60-(25+x)
= 35-x
✨ by Pythagoras theram
25² = x² + (35-x)²
625 = 2x² + 1225 - 70x
2x² -70x +600= 0
2x² - 40x -30x + 600 =0
2x(x-20) -30(x-20) =0
so,,
x = 15or 20
if x= 15 = p
b = 20
so, area of triangle = 1/2 b×h
= 150cm²
OR
IF x = 20 , so b = 15 , p= 20
so, area = 150cm²
✨ HOPE IT HELP U✨
Similar questions
Hindi,
6 months ago
Geography,
1 year ago
Math,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago