The perimeter of a right triangle is 60cm. Its hypotenuse is 26cm, find the other two sides and the area of the
triangle?
Answers
Answer
120 cm²
Explanation
Let the other two sides be a and b
Then,
a + b + 26 = 60
(since 60 is the perimeter of the triangle, sum of sides should equal 60)
⇒ a + b = 60 - 26
⇒ a + b = 34
Now, by Pythagoras theorem we have,
a² + b² = 26²
⇒ a² + b² = 676
Now,
a + b = 34
Squaring both sides, we get
(a + b)² = (34)²
⇒ a² + b² + 2ab = 1156
⇒ 676 + 2ab = 1156
⇒ 2ab = 1156 - 676
⇒ 2ab = 480
⇒ ab = 480/2
⇒ ab = 240
Now, we know that area of triangle = 1/2 × base × height
⇒ area of give triangle = 1/2 × a × b
= ab/2
⇒ 240/2
= 120 cm²
Answer:
⇢ Other two sides = 24 cm & 10 cm
⇢ Area of triangle = 120 cm²
Let the base and altitude be x cm & y cm.
As it is a right triangle,we can provide Pythagoras theorem here.
According to Pythagoras theorem:-
⇒ (Hypotenuse)² = (Base)² + (Altitude)²
⇒ (26)² = x² + y²
⇒ x² + y² = 676 ...................(eq.1)
2nd case:-
As,Perimeter of triangle = Sum of all sides
⇒ 60 = 26 + x + y
⇒ x + y = 60 - 26
⇒ x + y = 34
⇒ x = 34 - y................(ii)
- Putting value of (eq.2) in (eq.1):-
⇒ (34 - y)² + y² = 676
⇒ (34)² + y² - 68y + y² = 676
⇒ 1156 + 2y² - 68y = 676
⇒ 2y² - 68y + 1156 - 676 = 0
⇒ 2y² - 68y + 480 = 0
⇒ 2(y² - 34y + 240) = 0
⇒ y² - 34y + 240 = 0
⇒ y² - 24y - 10y + 240 = 0
⇒ y(y - 24)-10(y - 24) = 0
⇒ (y - 24)(y - 10) = 0
⇒ (y - 24) = 0 or (y - 10) = 0
⇒ y = 24 or y = 10
- Putting value of y in (eq.2)
1st case:-
⇒ Base = 34 - 10 cm
⇒ Base = 24 cm
2nd case:-
⇒ Base = 34 - 24 cm
⇒ Base = 10 cm
- Now,area of triangle:-
We know,
Area of triangle = ½ × Base × Altitude
⇒ Area of triangle = ½ × 24 × 10
⇒ Area of triangle = 120 cm²