The perimeter of a right triangle is 90 cm and its area is 180 cm^2. What is its hypotenuse?
Answers
Answered by
0
a ,b, c be sides of Rt angled Triangle c being hypotenuse
perimeter = a+ b+ c =90 cm therefor c=90–a -b & a +b=90-c
area =1/2* ab =180 ; ab=360
by Pythagoras theorem =a^2+b^2 =c^2 =[90-a-b]^2
a^2+b^2=8100 +a^2+b^2 -180a+2ab-180b
8100 -180a+2ab-180b=0 ; 8100 -180[a +b] +2*360=0
8100–180[90-c]+720=0
8820= 180*90+180c
8820= 16200+180c
-7380 =180c
c=-41
Hypotenuse c=41cms
To find other sides a & b
a+ b+ c =90 so a+b+41=90 ; a+ b= 90–41 =49 ; a =49-b
ab =360 ; [49-b]*b =360 ; 49b-b^2 =360 ; b^2–49b+360=0
b^2 -40b-9b+360=0 ;b[b-40]-9[b-40]=0 ; [b-9][b-40] =0
so b=9 or b=40
a+b+c =90 ; a =90-b-c ; =90–9–41 =40cm
Hypotenuse c=41cms
Similar questions