Math, asked by ishant8820, 5 months ago

The perimeter of a room is 44 m. If hight and length is 12 m & 6m respectively .find the valume​

Answers

Answered by Anonymous
7

Given:-

  • Perimeter of a Cuboid room is 44 m.
  • Height of a Cuboid room is 12 m.
  • Length of a Cuboid room is 6 m.

To find:-

  • Volume of the Cuboid room.

Solution:-

Firstly,

  • we have to find out the breadth.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Perimeter_{(rectangle)} = 2(length + breadth)}}}}}

\tt\longmapsto{44 = 2(l + b)}

\tt\longmapsto{44 = 2(6 + b)}

\tt\longmapsto{44 = 12 + 2b}

\tt\longmapsto{2b = 44 - 12}

\tt\longmapsto{2b = 32}

\tt\longmapsto{b = \dfrac{32}{2}}

\tt\longmapsto{b = 16\: m}

Hence,

  • the breadth of the Cuboid room is 16 m.

Then,

  • finding the Volume of the Cuboid room.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Volume_{(Cuboid)} = (length \times breadth \times height)}}}}}

\tt\longmapsto{Volume_{(Cuboid)} = (l \times b \times h)}

\tt\longmapsto{Volume_{(Cuboid)} = (6 \times 16 \times 12)}

\tt\longmapsto{Volume_{(Cuboid)} = 96 \times 12}

\sf\longmapsto{\boxed{\red{Volume_{(Cuboid)} = 1152\: m^3}}}

Hence,

  • the Volume of Cuboid room is 1152 m³.

Formulas related to SA and Volume:-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions