Math, asked by Omkarnadh, 22 hours ago

The perimeter of a school volleyball court is 177ft and the length is twice the width what are the dimensions of the volleyball court ​

Answers

Answered by Anonymous
18

Given :

  • Perimeter of school volleyball court = 177 ft
  • Length is twice the width .

 \\ \rule{200pt}{3pt}

To Find :

  • Dimensions of the volleyball court = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

  • Perimeter of Rectangle :

 {\green{\dashrightarrow}} \: \: {\underline{\overline{\boxed{\orange{\pmb{\frak{ Perimeter = 2(L + B )}}}}}}}

Where :

  • ➳ L = Length
  • ➳ B = Breadth or Width

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Breadth :

 {\pink{\leadsto}} Let the Breadth be y .So,

  • ➳ Breadth = y
  • ➳ Length = 2 × y

 \\

Let's Calculate :

 {\longmapsto{\qquad{\sf{ Perimeter{\small_{(Volleyball \: Court)}} = 2(L + B) }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 177 = 2[( 2 \times y) + (y) ] }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 177 = 2(2y + y) }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 177 = 4y + 2y }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ 177 = 6y }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{177}{6} = y}}}} \\ \\ \ {\qquad{\textsf{ Value of y = {\pink{\sf{ 29.5 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Dimensions :

 {\color{red}{\underline{\underline{\purple{\sf{ Breadth = y = 29.5 \: feet }}}}}}

 {\color{red} {\underline{\underline{\purple{\sf{ Length = 2y = 2 \times 29.5 = 59 \: feet  }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❝ Length of the volleyball court is 59 ft and its width is 29.5 ft . ❞

 \\ {\green{\underline{\rule{75pt}{9pt}}}}{\color{maroon}{\underline{\rule{75pt}{9pt}}}}{\red{\underline{\rule{75pt}{9pt}}}}

Answered by jaswasri2006
6

\underline{ \pink{ \rm GIVEN \:  \: DATA\: \: : }}

Perimeter of a Rectangular Volleyball Court is 177ft.

Length is twice it's breadth.

\underline{ \purple{ \rm TO  \:  \: FIND  \: \: : }}

Find it's Dimensions.

\underline{ \red{ \rm SOLUTION \: \: : }}

Let the Breadth be x

and, the Length be 2x

so,

By using the Perimeter Formula.

 \boxed{  \blue\ast \:  \boxed{ \boxed{ \mathfrak{ \orange{Perimeter} = \green{ 2(l+b) }}}}}

so, by Applying the Values,

 ➻ \:  \: \rm Perimeter = 2(2x + x)

➻ \:  \: \rm 177 = 6x

 ➻ \:  \: \rm x =  \frac{177}{6}

 ➻ \:  \: \boxed{ \color{green} \rm x = 29.5 \:ft}

Now, Finding it's Dimensions :

 \sf Length  = 2x = 59 ft

  \color{maroon} \mathbf{⍟ \:  \: Length \:  \:  of \:  \:volleyball \:  \: court \:  \: is } \:  \:  \color{indigo}{ \rm 59ft}

 \sf Breadth = x = 29.5ft

 \color{darkgreen} \mathbf{⍟ \:   \: Breadth \:  \: of \:  \: volleyball \:  \: court \:  \: is} \:  \:  \color{gold} \rm29.5ft

Similar questions