Math, asked by iamt5679, 11 months ago

The perimeter of a semicircular garden is 180m. Find the area of the garden.

Answers

Answered by Anonymous
1

 \mathtt{  \huge \purple{\underline{ \fbox{ \orange{ \: Solution : \:  \:  \: }}}}}

Given ,

Perimeter of semicircle = 180 cm

We know that , the perimeter of Circle is given by

 \sf \large{ \fbox {Perimeter \:  of  \: semicircle = \pi ( r) }}

\sf \hookrightarrow 180 =  \frac{22}{7}  \times r \\  \\\sf \hookrightarrow r =   \frac{1260}{22}   \\  \\\sf \hookrightarrow  r = 57.2 \: cm

Now , the area of circle is given by

 \large \sf  \fbox{Area  \: of   \:  circle =  \frac{\pi {(r)}^{2} }{2} }

 \sf \hookrightarrow Area =  \frac{ \cancel{22}  \times {(57.2)}^{2} }{7 \times  \cancel2}  \\  \\ \sf \hookrightarrow  Area = \frac{11 \times  {(57.2)}^{2} }{7}  \\  \\  \sf \hookrightarrow Area = \frac{11 \times 3271.84}{7}  \\  \\ \sf \hookrightarrow Area =  \frac{35990.24}{7}  \\  \\ \sf \hookrightarrow Area = 5141.46 \:  \:  {cm}^{2}

Hence , the area of circle is 5141.46 cm²

Similar questions