Math, asked by covid021021, 3 months ago

the perimeter of a sqaure of side 12 cm is the same as that of a 15 cm long rectangle find the area of the rectangle is solution​

Answers

Answered by Neency
22

 \huge \green{answer}

 \pink{given}

perimeter of sq= perimeter of rectangle

4x = 2(l+b)

4×12=2(l+b)

24 = 15+b

b= 24- 15

therefore, breadth of rectangle = 9 cm

area of rectangle =l×b

15×9

answer, 135

#be brainly

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\ \tt \:  Given -  \begin{cases} &\sf{Side_{(square)}, \: x \:  =  \: 12 \: cm} \\ &\sf{Length_{(rectangle)},  \: l \:  = 15 \: cm }\\ &\sf{Perimeter_{(square)} = Perimeter_{(rectangle)}} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\tt{Area \:  of  \: rectangle}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\tt \: Formula  \: used  \begin{cases} &\sf{Perimeter_{(square)} = 4 \times side} \\ &\sf{Perimeter_{(rectangle)} = 2(l \:  +  \: b)}\\ &\sf{Area_{(rectangle)} = l \:  \times  \: b } \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf  Let :-  \begin{cases} &\sf{Breadth_{(rectangle)} \: be \: b \: cm}  \end{cases}\end{gathered}\end{gathered}

 \tt \begin{gathered}\bf\red{ \tt \: According \: to \: statement}\end{gathered}

 \tt \: Perimeter_{(square)} \:  =  \: Perimeter_{(rectangle)}

\tt\implies \:4x = 2(l \:  +  \: b)

\tt\implies \:4 \times 12 = 2(15 + b)

\tt\implies \:48 = 30 + 2b

\tt\implies \:2b \:  = 48 - 30

\tt\implies \:2b \:  =  \: 18

\tt\implies \:b \:  =  \: 9 \: cm

\tt \: Hence,  \: Area_{(rectangle)} \:  =  \: length \:  \times  \: breadth

\tt\implies \:Area_{(rectangle)}  = 15 \times 9 = 135 \:  {cm}^{2}

Similar questions