Math, asked by aliavesh616, 4 months ago

The Perimeter of a square is 248 m .Find the area of the Square​

Answers

Answered by 321239
0

Answer:

Area of the square = 3844m^2.

Attachments:
Answered by INSIDI0US
5

Step-by-step explanation:

Question :-

  • Find the area of square whose perimeter is 248 m.

To Find :-

  • Area of square.

Solution :-

Given :

  • Perimeter = 248 m

According to the question,

By using the formula,

{\sf{\longrightarrow Perimeter\ of\ square\ =\ 4a}}

Where,

  • a = length of the side

Finding side of square :

{\sf{\longrightarrow Perimeter\ of\ square\ =\ 4a}}

{\sf{\longrightarrow 248\ =\ 4a}}

{\sf{\longrightarrow \dfrac{248}{4}\ =\ a}}

{\sf{\longrightarrow 62\ =\ a}}

{\sf{\longrightarrow a\ =\ 62}}

Now, let's find the area of square.

\rule{300}{2}

By using the formula,

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

Where,

  • a = length of the side

Finding area of square :

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

{\sf{\longrightarrow (62)^2}}

{\sf{\longrightarrow 62 \times 62}}

{\sf{\longrightarrow 3,844\ m^2}}

\therefore Hence, area of square is 3,844 m².

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions