Math, asked by bhardwaj12anshu, 9 months ago

The perimeter of a traingular field 240dm if two of its side are 78dm and 50dm find the length of the perpendicular on the side of length 50dm from the opposite vertex?

Answers

Answered by silentlover45
5

\large\underline{Given:-}

  • Perimeter of triangle ⇢ 240 dm
  • Two sides ⇢ 78 dm and 50 dm

\large\underline{To find:-}

  • length of perpendicular.

\large\underline{Solutions:-}

  • 1st side ⇢ 78 dm
  • 2nd side ⇢ 50 dm
  • 3rd side ⇢ ?

⇢ Perimeter of triangle ⟹ 240 dm

\: \: \: \: \: \therefore Area \: \: of \: \: perimeter \: \: \leadsto \: \: a \: + \: b \: + \: c

\: \: \: \: \: \leadsto \: \: a \: + \: b \: + \: c \: \: = \: \: {240}

\: \: \: \: \: \leadsto \: \: {78} \: + \: {50} \: + \: c \: \: = \: \: {240}

\: \: \: \: \: \leadsto \: \: {128} \: + \: c \: \: = \: \: {240}

\: \: \: \: \: \leadsto \: \: c \: \: = \: \: {240} \: - \: {128}

\: \: \: \: \: \leadsto \: \: c \: \: = \: \: {112} \: dm

\: \: \: \: \: \therefore Area \: \: of \: \: triangle \: \: \leadsto \: \: \sqrt{s \: {(s \: - \: a)} {(s \: - \: b)}{(s \: - \: c)}}

\: \: \: \: \: \leadsto \: \: \sqrt{{120} \: {({120} \: - \: {78})} {({120} \: - \: {50})}{({120} \: - \: {112})}}

\: \: \: \: \: \leadsto \: \: \sqrt{{120} \: \times \: {42} \: \times \: {70} \: \times \: {8}}

\: \: \: \: \: \leadsto \: \: \sqrt{{5040} \: \times \: {560}}

\: \: \: \: \: \leadsto \: \: \sqrt{{2822400}}

\: \: \: \: \: \leadsto \: \: {1680} \: dm

\: \: \: \: \: \therefore Area \: \: of \: \: triangle \: \: \leadsto \: \: \frac{1}{2} \: \times \: b \: \times \: h

\: \: \: \: \: \leadsto \: \: {1680} \: \: = \: \: \frac{1}{2} \: \times \: {50} \: \times \: h

\: \: \: \: \: \leadsto \: \: {1680} \: \: = \: \: {25} \: \times \: h

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: {1680}{25}

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: {67.2} \: dm

\: \: \: \: \: So, \: \: The \: \: length \: \: perpetual \: \: is \: \: {67.2} \: dm.

______________________________________

Similar questions