Math, asked by mishrashagun847, 3 months ago

The perimeter of a triangle is 36cm and it's sides are in the ratio a:b:c= 3:4:5 then find the value of a,b and c (in cm).



Answers

Answered by RoseyThorn
3

Question ::-

The perimeter of a triangle is 36cm and it's sides are in the ratio a:b:c= 3:4:5 then find the value of a,b and c (in cm).

Given ::-

  • Perimeter of triangle = 36 cm

  • Ratio of sides = 3:4:5

To find ::-

  • Find the sides of triangle ?

Solution ::-

Let the common factor be g.

• Perimeter of triangle = 36 cm

  • A = 3g
  • B = 4g
  • C = 5g

According to question ::-

3g + 4g + 5g = 36

12g = 36

g = 36/12

g = 3 .

Value of g is 3

__________

  • A = 9 cm
  • B = 12 cm
  • C = 15 cm

_________

Answered by mailforsarah786
20

\sf\bold{\underline{\underline{\green{Given:-}}}}

 \mathtt{Sides \: = \: 3x \: , \: 4x \: and \: 5x}

 \mathtt{Perimeter \: of \: a \: Triangle \: = \: 36cm}

\sf\bold{\underline{\underline{\green{To \: \: Find:-}}}}

 \mathtt{The \: value \: of \: a \: , \: b \: , \: c}

{:}\longrightarrow  \mathtt{a \: + \: b \: + \: c \: = \: 36cm}

{:}\longrightarrow  \mathtt{3x \: + \: 4x \: + \: 5x \: = \: 36cm}

{:}\longrightarrow  \mathtt{12x \: = \: 36cm}

{:}\longrightarrow  \mathtt{x \: = \: 36 \: ÷ \: 12}

{:}\longrightarrow  \mathtt{x \: = \: 3cm}

 \mathtt{Value \: of \: a \: , \: b \: , \: c \: = \: 9 ,\: 12, \: 15}

\\ \boxed{\underline{\bf value\: of\: a,\: b,\: c,\: is\: 9 ,\ 12 ,\ 15,\  ! }} \\

 \mathbb{ BE \: \: BRAINLY }\boxed\checkmark

Similar questions